网站地图 | 联系我们 | 管理系统 | 登录邮箱 | 内网办公 | English | 中国科学院    
首页 所况介绍 机构设置 科研成果 研究队伍 合作交流 研究生教育 党群园地 科学传播
 
 首页 >>>  研究队伍 >>>  植物所人才
 

黄耀


职务/职称: 研究员
联系电话: 86-10-62836597;86-10-82593955
电子邮件: huangyao@ibcas.ac.cn
个人网页:
课 题 组: 陆地碳氮循环与模拟研究组

黄耀,男,博士,研究员,博士生导师。

  19561月出生于江苏省张家港市,分别于1982年和1986年获南京气象学院(现为南京信息工程大学)学士和硕士学位,1997年获美国莱斯大学(Rice University)博士学位。2000年入选中国科学院“引进国外杰出人才计划”,现任中国科学院植被与环境变化国家重点实验室主任,兼任南京农业大学和美国奥本大学(Auburn University)客座教授、国际SCI期刊Agricultural and Forest Meteorology Agriculture, Ecosystems and Environment 编委。自主开发了稻田甲烷排放模型(CH4MOD)和农田碳收支模型(Agro-C),并用于编制我国政府向《联合国气候变化框架公约》秘书处提交的国家稻田甲烷排放清单和农田土壤有机碳贮量变化清单。CH4MOD亦是《2006IPCC国家温室气体清单指南》Tier 3引用推荐的两个农田温室气体排放清单编制模型之一。迄今发表论文180余篇,其中SCI检索论文80余篇,出版专著3部。已培养硕士20名、博士24名、出站博士后6名;目前在读博士生和硕士生9名。指导的博士研究生中,1人为全国百篇优秀博士学位论文获得者,并获国家杰出青年基金资助。 

主要研究工作:  

  1.陆地生态过程模拟 

  应用生物地球化学、生物物理和数值模拟的理论和方法,研究陆地生态系统的物质循环过程及其变化。研究重点为陆地生态系统碳氮循环与温室气体排放。 

  2.陆地生态系统对全球变化的响应与适应 

  采用实验观测、多元数据集成分析和模型模拟等方法,研究陆地生态系统对全球变化的响应与适应。研究重点为全球变化对陆地生态系统碳源汇的影响,农作物生长发育和产量形成对气候变化的响应及其适应性对策。 

主持和参加的科研项目  

  [1] 土地利用CH4N2O排放机理及模型模拟,中国科学院战略性先导科技专项应对气候变化的碳收支认证及相关问题课题(批准号:XDA05020200)(2011.1-2015.12)。课题负责人。 

  [2] 气候变化与中国农业:对粮食生产的影响评估和适应性对策研究,中国科学院挪威研究理事会合作项目(批准号:GJHZ1024)(2012.1-2014.12)。项目负责人。 

  [3] 中国陆地生态系统碳源汇预测与碳汇潜力评估973计划中国陆地生态系统碳源汇特征及其全球意义课题(批准号:2010CB950604)(2010.6-2014.12)。课题负责人。 

  [4] “1950s-2000s 全球自然湿地甲烷排放估计,国家自然科学基金面上项目(批准号:41075107)(2011.1-2013.12)。项目负责人。 

  [5] 三江平原沼泽湿地垦殖对地气碳交换和土壤碳库影响的研究,国家自然科学基金重点项目(批准号:40431001)(2005.1-2008.12)。项目负责人。 

  [6] 我国减缓气候变化的碳汇管理与适应气候变化的对策研究,中国科学院知识创新工程重要方向项目(批准号:kzcx2-yw-305)(2007.1-2009.12)。项目负责人。 

  [7] 中国陆地和近海生态系统碳收支研究,中国科学院知识创新工程重大项目(批准号:KZCX1-SW-01)(2001.8-2006.7)。项目首席科学家。 

  [8] “陆地生态系统痕量气体排放的实验与计算机模拟研究,中国科学院引进国外杰出人才计划项目(2000-20032004-2005)。项目负责人。 

 研究论文(注*为通讯作者) 

  [1] Zhang W, Yu Y, Li T, Sun W, Huang Y*, 2014. Net greenhouse gas balance in China’s croplands over the last three decades and its mitigation potential. Environmental Science & Technology, 48 (5): 2589–2597 

  [2] Ding F, Huang Y, Sun W*, Jiang G, Chen Y, 2014. Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in Northern China. PLoS ONE, 9(4): e95348 

  [3] Qin Z, Huang Y*, Zhuang Q, 2013. Soil organic carbon sequestration potential of cropland in China. Global Biogeochemical Cycles, 27:711–722 

  [4] Wang G, Huang Y*, Wang E, Yu Y, Zhang W, 2013. Modeling soil organic carbon change across Australian wheat growing areas, 1960–2010. PLoS ONE, 8(5): e63324 

  [5] Zhang TY*, Huang Y, Yang XG, 2013. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Global Change Biology, 19:563–570 

  [6]  Zhang TY* and Huang Y, 2013. Estimating the impacts of warming trends on wheat and maize in China from 1980 to 2008 based on county level data. International Journal of Climatology, 33:699–708 

  [7] Chen ST*, Huang Y, Zou JW, Shi YS, 2013. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Global and Planetary Change, 100:99–108 

  [8] Yu YQ*, Huang Y, Zhang W, 2013. Projected changes in soil organic carbon stocks of China’s croplands under different agricultural managements, 2011–2050. Agriculture, Ecosystems & Environment, 178:109–120 

  [9] Sun WJ and Huang Y*, 2012. Synthetic fertilizer management for China’s cereal crops has reduced N2O emissions since the early 2000s. Environmental Pollution, 160:24–27 

  [10] Yu YQ, Huang Y*, Zhang W, 2012. Modeling soil organic carbon change in croplands of China, 1980–2009. Global and Planetary Change, 82–83:115–128 

  [11] Sun W and Huang Y*, 2011. Global warming over the period 1961–2008 did not increase high-temperature stress but did reduce low-temperature stress in irrigated rice across China. Agricultural and Forest Meteorology, 151:1193–1201 

  [12] Chen J, Huang Y*, Tang YH, 2011. Quantifying economically and ecologically optimum nitrogen rates for rice production in south-eastern China. Agriculture, Ecosystems and Environment, 142:195–204 

  [13] Zhang W, Huang Y, Yu YQ, Sun WJ, 2011. Empirical models for estimating daily maximum, minimum and mean air temperatures with MODIS land surface temperatures. International Journal of Remote Sensing, DOI: 10.1080/01431161.2011.560622 

  [14] Zhang W, Yu YQ, Huang Y, Li TT, Wang P, 2011. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050, Global Change Biology, 17:3511–3523 

  [15] Huang Y*, Sun WJ, Zhang W, Yu YQ, Su YH and Song CC, 2010. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Global Change Biology, 16:680–695 

  [16] Huang Y*, Tang YH, 2010. An estimate of greenhouse gas (N2O and CO2) mitigation potential under various scenarios of nitrogen use efficiency in Chinese croplands. Global Change Biology, 16:2958–2970 

  [17] Huang Y*, Sun WJ, Zhang W &Yu YQ, 2010. Changes in soil organic carbon of terrestrial ecosystems in China: A mini-review. Science China Life Sciences, 53(7):766–775 

  [18] Sun WJ, Huang Y*, Zhang W, Yu YQ, 2010. Carbon sequestration and its potential in agricultural soils of China. Global Biogeochemical Cycles24, GB3001, doi:10.1029/2009GB003484 

  [19] Qin ZC & Huang Y*, 2010. Quantification of soil organic carbon sequestration potential in cropland: A model approach. Science China Life Sciences53(7):868–884 

  [20] Zou JW, Lu YY, Huang Y*, 2010. Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980–2000. Environmental Pollution, 158:631–635 

  [21] Jiang JY, Hu ZH, Sun WJ, Huang Y*, 2010. Nitrous oxide emissions from Chinese cropland fertilized with a range of slow-release nitrogen compounds. Agriculture, Ecosystems and Environment, 135:216–225 

  [22] Li TT, Huang Y*, Zhang W and Song CC, 2010. CH4MODwetland: A biogeophysical model for simulating methane emission from natural wetlands. Ecological Modelling, 221:666–680 

  [23] Chen ST, Huang Y, Zou JW, Shen QR, Hu ZH, Qin YM, Chen HS, Pan GX, 2010. Modeling interannual variability of global soil respiration from climate and soil properties. Agricultural and Forest Meteorology, 150:590–605 

  [24] Piao SL, Ciais P, Huang Y, Shen ZH, Peng SS, Li JS, Zhou LP, Liu HY, Ma YC, Ding YH, Friedlingstein P, Liu CZ, Tan K, Yu YQ, Zhang TY, and Fang JY, 2010. The impacts of climate change on water resources and agriculture in China. Nature, 467:43–51 

  [25] Huang Y*, Yu YQ, Zhang W, Sun WJ, Liu SL, Jiang J, Wu JS, Yu WT, Wang Y, Yang ZF, 2009. Agro-C: A biogeophysical model for simulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology, 149(1):106–129 

  [26] Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S & Wang T, 2009. The carbon balance of terrestrial ecosystems in China. Nature, 458:1009–1013 

  [27] Sun WJ, Huang Y*, Zhang W, Yu YQ, 2009. Estimating topsoil SOC sequestration in croplands of eastern China from 1980 to 2000. Australian Journal of Soil Research, 47(3): 261–272 

  [28] Zou JW, Huang Y, Qin YM, Liu SW, Seng QR, Pan GX, Lu YY, Liu QH, 2009. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice growing season in China between 1950s and 1990s. Global Change Biology, 15:229–242 

  [29] Chen ST, Huang Y, 2009. Soil respiration and N2O emission in croplands under different ploughing practices: a case study in south-east China. Australian Journal of Soil Research, 47(2):198–205 

  [30] Zhao XS, Huang Y*, Jia ZJ, Liu HZ, Song T, Wang YS, Shi LQ, Song CC, Wang YY, 2008. Effects of the conversion of marshland to cropland on water and energy exchanges in northeastern China. Journal of Hydrology, 355, 181–191 

  [31] Chen ST, Huang Y, Zou JW, 2008. Relationship between nitrous oxide emission and winter wheat production. Biology and Fertility of Soils, 44:985−989 

  [32] Huang Y*, Zhang W, Sun WJ, Zheng XH, 2007. Net primary production of Chinese croplands from 1950 to 1999. Ecological Applications, 17(3):692−701 

  [33] Sun WJ, Huang Y*, Chen ST, Zou JW and Zheng XH, 2007. Dependence of wheat and rice respiration on tissue nitrogen and the corresponding net carbon fixation efficiency under different rates of nitrogen application. Advances in Atmospheric Science, 24(1): 55−64 

  [34] Zou J, Huang Y, Zheng X and Wang Y, 2007. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmospheric Environment, 41(37): 8030−8042 

  [35] Zhang W, Huang Y, Sun WJ, Yu YQ, 2007. Simulating crop net primary production in China from 2000 to 2050 by linking the Crop-C model with a FGOALS’s model climate change scenario. Advances in Atmospheric Science, 24(5): 845−854 

  [36] Huang Y* & Sun WJ, 2006. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chinese Science Bulletin, 51(15):1785−1803 

  [37] Huang Y*, Zhang W, Zheng XH, Han SH, Yu YQ, 2006. Estimates of methane emissions from Chinese rice paddies by linking a model to GIS database. Acta Ecologica Sinica, 26(4):980−988 

  [38] Lu YY, Huang Y*, Zou JW, Zheng XH, 2006. An inventory of N2O emissions from agriculture in China using precipitation-rectified emission factor and background emission. Chemosphere, 65(11):1915−1924 

  [39] Chen ST, Huang Y*, 2006. Determination of respiration, gross nitrification and denitrification in soil profile using BaPS system. Journal of Environmental Sciences, 18(5):937−943 

  [40] Dai WH and Huang Y, 2006. Relation of soil organic matter concentration to climate and altitude in zonal soils of China. CATENA, 65(1):87−94 

  [41] Jiao Y, Huang Y*, Zong LG, Zheng XH, Sass RL, 2005. Effects of copper concentration on methane emission in rice soils. Chemosphere, 58(2):185–193 

  [42] Zou JW, Huang Y, Jiang JY, Zheng XH and Sass RL, 2005. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue and fertilizer application. Global Biogeochemical Cycles, 19, GB2021, doi:10.1029/2004GB002401 

  [43] Zou JW, Huang Y, Lu YY, Zheng XH and Wang YS, 2005. Direct emission factor for N2O from rice-winter wheat rotation systems in southeast China. Atmospheric Environment, 39:4755–4765 

  [44] Zou JW, Huang Y, Sun WJ, Zheng XH and Wang YS, 2005. Contribution of plants to N2O emissions in soil-winter wheat ecosystem: pot and field experiments. Plant and Soil, 269:205–211 

  [45] Huang Y*, Zhang W, Zheng XH, Li J and Yu YQ, 2004. Modeling methane emission from rice paddies with various agricultural practices. Journal of Geophysical Research, 109, D08113, doi:10.1029/2003JD004401 

  [46] Huang Y*, Zou JW, Zheng XH, Wang YS & Xu XK, 2004. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biology & Biochemistry, 36(6):973–981 

  [47] Zou JW, Huang Y*, Zheng XH, Wang YS and Chen YQ, 2004. Static opaque chamber-based technique for determination of net exchange of CO2 between terrestrial ecosystem and atmosphere. Chinese Science Bulletin, 49(4):381–388 

  [48] Zou JW, Huang Y*, Zong LG, Zheng XH and Wang YS, 2004. Carbon dioxide, nitrous oxide and methane emissions from a rice―wheat rotation as affected by crop residue incorporation and temperature. Advances in Atmospheric Science, 21(5):691–698 

  [49] Zheng XH, Han SH, Huang Y, Wang YS, and Wang MX, 2004. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles, 18, GB2018, doi:10.1029/2003GB002167 

  [50] Zheng XH, Huang Y, Wang YS, Wang MX, 2003. Seasonal characteristics of nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Change Biology, 9:219–227 

  [51] Zheng XH, Huang Y, Wang YS, Wang MX, Jin JS, Li LT, 2003. Effects of soil temperature on nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Change Biology, 9:601–611 

  [52] Huang Y*, Jiao Y, Zong LG, Wang YS and Sass RL, 2002. Nitrous oxide emissions from the wheat-growing season in eighteen Chinese paddy soils: an outdoor pot experiment. Biology and Fertility of Soils, 36:411–417 

  [53] Huang Y*, Jiao Y, Zong LG, Zheng XH, Sass RL and Fisher FM, 2002. Quantitative dependence of methane emission on soil properties. Nutrient Cycling in Agroecosystems, 64(1-2):157–167 

  [54] Huang Y*, Jiang J Y, Zong L G, Sass R L and Fisher F M, 2001. Comparison of field measurements of CH4 emission from rice cultivation in Nanjing, China and in Texas, USA. Advances in Atmospheric Sciences, 18 (6): 1121–1130 

  [55] Huang Y*, Sass R L and Fisher F M, 1998. A semi-empirical model of methane emission from flooded rice paddy soils. Global Change Biology, 4:247–268 

  [56] Huang Y*, Sass R L and Fisher F M, 1998. Model estimates of methane emission from irrigated rice cultivation of China. Global Change Biology, 4: 809–821 

  [57] Huang Y*, Gao L Z, Jin Z Q and Chen H, 1998. Simulating the optimal growing season of rice in the Yangtze River Valley and its adjacent area, China. Agricultural and Forest Meteorology, 91:251–262 

  [58] Huang Y*, Sass R L and Fisher F M, 1997. Methane emission from Texas rice paddy soils. 1. Quantitative multi-year dependence of CH4 emission on soil, cultivar and grain yield. Global Change Biology, 3:479–489 

  [59] Huang Y*, Sass R L and Fisher F M, 1997. Methane emission from Texas rice paddy soils. 2. Seasonal contribution of rice biomass production to CH4 emission. Global Change Biology, 3:491–500 

  [60]  Huang Y*, Gao L Z, Jin Z Q and Chen H, 1996. A software package for optimizing rice production management based on growth simulation and feedback control. Agricultural Systems, 50:335–354 

  [61] 黄耀*,孙文娟,张稳,于永强,魏玉荣,2010. 中国草地碳收支研究与展望. 第四纪研究,30(3):456–465 

  [62] 王雅婕,黄耀*,张稳,2009. 1961–2003年中国大陆地表太阳总辐射变化趋势. 气候与环境研究,14(4):405−413 

  [63] 王亚平,黄耀*,张稳,2008. 中国东北三省1960-2005年地表干燥度变化趋势. 地球科学进展,23(6):619−627 

  [64] 胡正华,蒋静艳,牛传坡,孙文娟,黄耀*2007. 地表UV-B辐射增强对土壤冬小麦系统呼吸速率和N2O排放的影响. 环境科学,28(3):449−454 

  [65] 黄耀*, 2006. 中国的温室气体排放、减排措施与对策. 第四纪研究,26(5):722−732 

  [66] 孙文娟, 黄耀*, 陈书涛, 邹建文, 郑循华, 2005. 稻麦作物呼吸作用与植株氮含量、生物量和温度的定量关系. 生态学报,25(5):1152–1158 

  [67] 孙文娟,黄耀*,陈书涛,杨兆芳,郑循华, 2004. 作物生长和氮含量对土壤-作物系统CO2排放的影响. 环境科学,25(3):1−6 

  [68] 黄耀*,沈雨,周密,马瑞升,2003. 木质素和氮含量对植物残体分解的影响. 植物生态学报,27(2):183−188 

  [69] 黄耀*,刘世梁,沈其荣,宗良纲,2002. 环境因子对农业土壤有机碳分解的影响. 应用生态学报,13(6):709−714 

  [70] 黄耀*,刘世梁,沈其荣,宗良纲,2001. 农田土壤有机碳动态模拟模型的建立. 中国农业科学, 34(5):532−536 

  著作专著:  

  [1] 黄耀,周广胜,吴金水,延晓冬 ()中国陆地生态系统碳收支模型. 北京:科学出版社,2008 

  [2] 陈泮勤,黄耀,于贵瑞 (编著)地球系统碳循环. 北京:科学出版社,2004 

  [3] 黄耀 ()地气系统碳氮交换从实验到模型. 北京:气象出版社,2003 


  获奖及荣誉:  

  1.    2013年“中国农田温室气体排放与减排增汇研究”获江苏省科学技术(自然科学类)一等奖(第一完成人)。 

  2.    2010年“中国陆地碳收支评估的生态系统碳通量联网观测与模型模拟系统”获国家科技进步二等奖(第三完成人)。 

  3.    2008年“中国农田温室气体排放过程与模型研究”获教育部自然科学二等奖(第一完成人)。 

  2007年获全国优秀博士学位论文指导教师荣誉称号。 


[ 打印本页 ]   [ 关闭窗口 ]    

| 本站导航 | 园区风光| 联系我们 |
版权所有:中国科学院植物研究所 地址:北京市海淀区香山南辛村20号 邮编:100093 电话:010-62590835
网站备案号:京ICP备05002828号       文保网安备案号:1101080078