Ecophysiological evaluation of the potential invasiveness of Rhus typhina in its non-native habitats

作  者:Zhang ZJ, Jiang CD, Zhang JZ, Zhang HJ, Shi L
影响因子:2.283
刊物名称:Tree Physiology
出版年份:2009
卷:29  期:1  页码:1307-1316

论文摘要:

Rhus typhina L. (staghorn sumac) is a clonal woody species that is considered potentially invasive in its non-native habitats. It is slow growing as seedlings, but grows fast once established. Its growth in the early stages is limited by many abiotic factors, including light intensity. To evaluate its potential of becoming invasive in areas it has been introduced into, we conducted a field experiment to investigate the effects of light intensity on the physiology and growth of R. typhina. Two-month-old R. typhina seedlings were examined under five light levels, that is, 100% full sunlight (unlimited light), moderate stress (50% or 25% of full sunlight) and severe stress (10% or 5% of full sunlight), for 60 days in Hunshandak Sandland, China. Net photosynthetic rate (P-N) was reduced significantly under severe light stress, but P-N of the moderately stressed seedlings was unaffected. Light stress also led to a reduction in saturated light intensity of the moderately stressed seedlings by 20% and of the severely stressed seedlings by 40%, although the light saturation points were as high as 800 and 600 mu mol m(-2) s(-1) for the moderately and severely stressed seedlings, respectively. Under severe light stress, the maximum quantum yield of Photosystem II (F-v/F-m) decreased significantly, but the minimal fluorescence yield (F-0) increased compared to that of the control plants. The number of newly produced leaves and the stem height, however, decreased as the light intensity became lower. Root length and leaf area decreased, whereas specific leaf area significantly increased as light became increasingly lower. Biomass production was significantly reduced by light stress, but the allocation pattern was unaffected. Our results demonstrated that R. typhina seedlings can survive low light and grow well in other light conditions. The physiology and growth of R. typhina will likely enable it to acclimate to varying light conditions in Hunshandak Sandland, where R. typhina has been widely cultivated for sand stabilization and other purposes. Because of its ability to tolerate low light and to compete aggressively for light resource once established, that is, becoming invasive, we urge caution when it comes to introducing R. typhina into its non-native habitats, despite its many ecological benefits.