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a b s t r a c t

This paper investigates the effects of delayed growth response on the dynamic behaviors
of the Monod type chemostat model with impulsive input nutrient concentration. By the
use of the discrete dynamical system determined by the stroboscopic map, we obtain
a ‘microorganism-extinction’ periodic solution, further, prove that the ‘microorganism-
extinction’ periodic solution is globally attractive if the impulsive period satisfies some
conditions. Using the theory on delay functional and impulsive differential equation, we
obtain sufficient condition with time delay for the permanence of the system, and prove
that time delays, impulsive input nutrient can bring obvious effects on the dynamic
behaviors of the model.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The chemostat is a very important laboratory apparatus for the study of microbial population dynamics under nutrient
limitation. Sterilemedium enters the chemostat at a constant rate; the volume of the chemostat is held constant by allowing
excess medium (and microbes) to flow out through a siphon. We introduce this chemostat with a heterotrophic bacterium
that has – in the medium – an abundance of all necessary nutrients but one. This last nutrient is the limiting substrate.
It has many applications and can be reasonably modelled by differential equations. Moreover, systematic analysis of such
models are often mathematically challenging, yet possible. An excellent reference for this subject is the recent book by
Smith and Waltman [1]. Recently, many mathematical chemostat models were formulated, and many good results were
obtained [1–22]. Transient growth dynamics are of considerable importance in the study of how microorganisms respond
to environmental changes, and are pertinent to understanding the control mechanisms for microbial growth [3]. Much
research, both theoretical and experimental, has been undertaken regarding the transient behavior of microbial population
growth in the chemostat. While the Monod model [4] has some success in describing steady state growth rates [1,5], it
has been found to be inadequate to predict transients observed in chemostat experiments where the initial data does not
correspond to the globally attracting steady state. Lag phases occur in the growth response of microorganisms to changes
in the environment [6]. Ramkrishna et al. [7], in order to introduce a lag phase, assumed that the biomass is composed of
two groups of substances which interact with each other and with substances in the environment to produce growth. The
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structure assigned to the organisms in the model accounts for the dependence of growth on the past history of the cells,
and hence it is capable of predicting the lag phases and transient oscillations observed in experiments. Many authors have
directly incorporated time delays in the modelling equations and, as a result, the models take the form of delay differential
equations [8–18]. In [9], Caperon used delay differential equations to describe the time lag in the growth response, and
the resulting model successfully predicted the population growth in experiment data under dynamic conditions. In [13],
Thingstad and Langeland introduced a discrete delay in the Monod model and showed that persistent oscillations are
possible. itwas found in [16] that the timedelay can affect both the qualitative andquantitative behavior of the solutions, and
numerical simulations illustrate that the models with delay may exhibit slightly more oscillations in the transients, when
compared with the models without delay. We refer to [19,15], and the references therein, for more detailed discussions on
chemostat modelling approaches using delay differential equations. The more details can be seen in [1,14–19].
In recent years, the microbial continuous culture has been investigated in [20–22] and some interesting results were

obtained. Many scholars pointed out that it was necessary and important to consider models with periodic perturbations,
since these models might be quite naturally exposed in many real world phenomena (for instance, food supply, mating
habits, harvesting). In fact, almost perturbations occur in a more-or-less periodic fashion. However, there are some other
perturbations such as fires, floods, and drainage of sewage which are not suitable to be considered continually. These
perturbations bring sudden changes to the system. Systemswith suddenperturbations are involving in impulsive differential
equations, which have been studied intensively and systematically in [23,24]. Authors, in [25–29], introduced some
impulsive differential equations in population dynamics and obtained some interest results. The research on the chemostat
model with impulsive perturbations is not too much yet (see Refs. [30–32] and references therein). However, this is an
interest problem in mathematical biology and laboratory experiment.
In view of our arguments above, it is very interesting to introduce delayed growth response and impulsive input nutrient

concentration to chemostat model. While delay differential equations have been widely used in modelling population
dynamics, some practical problems have to be overcome when applied to models of the chemostat. We remark that the
dynamics of impulsive and delayed differential equation are usually more difficult to study than ordinary differential
equation. As a result, fewer analytic tools are available for studying the dynamics of impulsive and delayed differential
equation. In recently a few age-structured predator–preymodelswith impulse and delay and epidemicmodelswith impulse
and delay were investigated [33,34]. Thus, chemostat model with impulse and delay is not extensive. In this paper, we
consider the Monod type chemostat model with impulsive input nutrient concentration and delayed growth response, and
investigate how the impulsive perturbation of the substrate and timedelay for growth response affect the dynamic behaviors
of the chemostat continuous system.

2. Model and preliminaries

The following single-species Monod type chemostat model was introduced by Chen [35]:

S ′(t) = (S0 − S(t))D−
µmS(t)x(t)
δ(Km + S(t))

,

x′(t) = x(t)
(

µmS(t)
δ(Km + S(t))

− D
)
. (1)

In fact, on the one hand, the nutrient concentration is input periodically not continuously. On the other hand, the taken
nutrient cannot translate instantaneously into viable microorganisms, that is, there is a time delay in the growth response
that describes the lag involved in the nutrient conversion process. Therefore, impulse and time delay should be considered in
system (1). To investigate the effect of delayed growth response and impulsive perturbation on the nutrient concentration
on dynamic behaviors of the following chemostat model, we consider a single-species chemostat model with impulsive
perturbation and time delay:

S ′(t) = −DS(t)−
µmS(t)x(t)
δ(Km + S(t))

, t 6= nT , n ∈ N,

x′(t) = e−Dτ
µmS(t − τ)x(t − τ)
Km + S(t − τ)

− Dx(t), t 6= nT , n ∈ N,

S(t+) = S(t)+ γ S0, t = nT , n ∈ N, (2)
x(t+) = x(t), t = nT , n ∈ N,
S(0+) ≥ 0, x(0+) ≥ 0,

where S(t) denotes the concentration of the unconsumed nutrient in the growth vessel at time t and x(t) denotes the
biomass of the population of microorganisms at time t . The function p(S) = µmS(t)

δ(Km+S(t))
represents the species specific per-

capita nutrient uptake rate. It alsomodels the rate of conversion of nutrient to viable biomass. The growth yield constant has
been scaled out formathematical convenience. S0 andD are positive constants and denote, respectively, the concentration of
the growth-limiting nutrient and the flow rate of the chemostat (seemore details in [14–16]). The first and second equations
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hold between pulses, the third and fourth equation describes the actual pulsing. T = γ /D is the period of the pulsing, γ S0 is
the amount of limiting substrate pulsed each T . DS0 units of substrate are added, on average, per unit of time. The constant
τ ≥ 0 denotes the time delay involved in the conversion of nutrient to viable biomass. The constant positive constant, e−Dτ ,
is required, because it is assumed that the current change in biomass depends on the amount of nutrient consumed τ units
of time in the past by the microorganisms that were in the growth vessel at that time andmanaged to remain in the growth
vessel the τ units of time required to process the nutrient. S(nT+) = limn→nT+ S(t), and S(t) is left continuous at t = nT ,
i.e., S(nT ) = limn→nT− S(t), x(t) is continuous for all t ≥ 0, the details can be seen in the books of Bainov and Simeonov [23]
and Lakshmikantham et al. [24].
Motivated by the application of systems (2) to population dynamics (refer to [36]), we assume that solutions of systems

(2) satisfy the initial conditions

(φ1(s), φ2(s)) ∈ C+ = C([−τ , 0], R2+), φi(0) > 0 (i = 1, 2). (3)

Let R+ = [0,∞), R2
+
= {x ∈ R2 | x ≥ 0}. Denote f = (f1, f2) the map defined by the right hand side of the first two

equations of system (2), and N the set of all nonnegative integers. Let V : R+ × R2+ → R+, then V is said to belong to class
V0 if
(i) V is continuous in ((k − 1)T , kT ] × R2

+
k ∈ N , and for each x ∈ R2

+
, lim(t,z)→((k−1)T+,x) V (t, z) = V ((k − 1)T , x) and

lim(t,z)→(kT+,x) V (t, z) = V (kT+, x) exists.
(ii) V is locally Lipschitzian in x.

Definition 2.1. Let V ∈ V0, then for (t, x) ∈ ((k− 1)T , kT ] × R2+ k ∈ N , the upper right derivative of V (t, x)with respect to
the impulsive differential system (1) is defined as

D+V (t, x) = lim sup
h→0+

1
h
[V (t + h, x+ hf (t, x))− V (t, x)].

The solution of system (2), denoted by X = (S(t), x(t)) : R+ → R2
+
, is continuously differentiable on ((k− 1)T , kT )(k ∈ N).

Obviously, the global existence and uniqueness of solutions of system (2) is guaranteed by the smoothness properties of f
which is the right side (2) (for details see [23,24]).

Lemma 2.1 (see [23,24]). Consider the following impulse differential inequalities:

w′(t) ≤ (≥)p(t)w(t)+ q(t), t 6= tk,
w(t+k ) ≤ (≥)dkw(tk)+ bk, t = tk, k ∈ N,

where p(t), q(t) ∈ C(R+, R), dk ≥ 0, and bk are constants.
Assume
(A0) the sequence {tk} satisfies 0 ≤ t0 < t1 < t2 < · · ·, with limt→∞ tk = ∞;
(A1) w ∈ PC ′(R+, R) andw(t) is left continuous at tk, k ∈ N. Then

w(t) ≤ (≥)w(t0)
∏
t0<tk<t

dk exp
(∫ t

t0
p(s)ds

)
+

∑
t0<tk<t

( ∏
tk<tj<t

dj exp
(∫ t

tk
p(s)ds

))
bk

+

∫ t

t0

∏
s<tk<t

dk exp
(∫ t

s
p(θ)dθ

)
q(s)ds, t ≥ t0.

Lemma 2.2 ([36]). Consider the following delay differential equation
dx(t)
dt
= r1x(t − τ)− r2x(t),

where a, b, τ are all positive constants and x(t) > 0 for t ∈ [−τ , 0].
(i) If r1 < r2, then limt→∞ x(t) = 0.
(ii) If r1 > r2, then limt→∞ x(t) = +∞.

Lemma 2.3. There exists a constant L > 0 such that S(t) ≤ L and x(t) ≤ L for each solution of (2) with t ≥ 0.

Proof. Let (s(t), x(t)) be any solution of system (2) with initial condition (3). We claim that the solution (s(t), x(t))
of system (2) is bounded for all t ≥ t0. Otherwise, there is a positive integer N and a positive constant M =

max{S0, δe−Dτ S0, e−Dτ S(NT )+ 1
δ
x(NT )+ e−Dτ

∫ NT
NT−τ

µmS(θ)x(θ)
δ(Km+S(θ))

dθ}, such that S(t) > M or x(t) > M for t ≥ NT .
Let

V (t) = e−Dτ S(t)+
1
δ
x(t)+ e−Dτ

∫ t

t−τ

µmS(θ)x(θ)
δ(Km + S(θ))

dθ.
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It is easy to see that V ≥ 0 and V →+∞when |(S, x)| → +∞. The upper right derivative of V (t) along the trajectories of
(2) is

V̇ (t) = −De−Dτ S(t)− e−Dτ
µmS(t)x(t)
δ(Km + S(t))

+
1
δ
e−Dτ

µmS(t − τ)x(t − τ)
Km + S(t − τ)

−
D
δ
x(t)

+ e−Dτ
µmS(t)x(t)
δ(Km + S(t))

− e−Dτ
µmS(t − τ)x(t − τ)
δ(Km + S(t − τ))

= −De−Dτ S(t)−
D
δ
x(t). (4)

Integrating and solving the Eq. (4) between pulses, yields

V (t) = V (nT )−
∫ t

nT
De−Dτ S(θ)+

D
δ
x(θ)dθ, t ∈ (nT , (n+ 1)T ], n ≥ N.

Then

V ((n+ 1)T ) = V (nT )−
∫ (n+1)T

nT
De−Dτ S(θ)+

D
δ
x(θ)dθ,

and

V ((n+ 1)T+) = V ((n+ 1)T )+∆V

= V (nT )−
∫ (n+1)T

nT
De−Dτ S(θ)+

D
δ
x(θ)dθ + γ e−Dτ S0.

So we have

V ((n+ 1)T+) ≤ V (nT )−
∫ (n+1)T

nT
De−Dτ S(θ)dθ + γ e−Dτ S0

< V (nT )−
∫ (n+1)T

nT
De−DτMdθ + γ e−Dτ S0

= V (nT )− TDe−DτM + γ e−Dτ S0
≤ V (nT )

or

V ((n+ 1)T+) ≤ V (nT )−
∫ (n+1)T

nT

D
δ
x(θ)dθ + γ e−Dτ S0

< V (nT )−
∫ (n+1)T

nT

D
δ
Mdθ + γ e−Dτ S0

= V (nT )− T
D
δ
M + γ e−Dτ S0

≤ V (nT ).

This contradict that V → +∞ when |(S, x)| → +∞. Therefore, there exists a constant L > 0 such that S(t) ≤ L and
x(t) ≤ L for each solution of (2) with t ≥ 0. The proof is complete.

3. Extinction

In this section, we investigate the extinction of the microorganism species, that is, microorganism are entirely absent
from the chemostat permanently, i.e.,

x(t) = 0, t ≥ 0. (5)
This is motivated by the fact that x∗ = 0 is an equilibrium solution for the variable x(t), as it leaves x′(t) = 0. Under these
conditions, we show below that the nutrient concentration oscillates with period T in synchronization with the periodic
impulsive input nutrient concentration.
From the second equation of system (2), we have

x′(t) ≤ µme−Dτ x(t − τ)− Dx(t). (6)
By Lemma 2.2, if µme−Dτ < D, then limt→∞ x(t) = 0, that is, the microorganism species becomes ultimately extinct. This
show that the specific growth of the microorganism species cannot supply the losing of the microorganism species to flow
out no matter how much input the nutrient. Therefore, we assume µme−Dτ > D in the rest of this paper.
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Assuming (5), we know that the nutrient concentration oscillates in the time-interval nT < t ≤ (n+ 1)T and give some
basic properties of the following subsystem of (2)

S ′(t) = −DS(t), t 6= nT , n ∈ N,
S(t+) = S(t)+ γ S0, t = nT , n ∈ N,
S(0+) > 0.

(7)

Clearly,

S∗(t) =
γ S0e−D(t−nT )

1− e−DT
, t ∈ (nT , (n+ 1)T ], n ∈ N, S∗(0+) =

γ S0
1− e−DT

is a positive periodic solution of (7). The solution of (7) is S(t) = (S(0+)− S∗(0+))e−Dt + S∗(t), t ∈ (nT , (n+ 1)T ], n ∈ N .
Therefore, we have the following Lemma 3.1.

Lemma 3.1. System (7) has a unique positive periodic solution S∗(t), that is, the system (2) has a ‘microorganism-extinction’
periodic solution (S∗(t), 0) for t ∈ (nT , (n+ 1)T ], n ∈ N, for any solution (S(t), x(t)) of (2)we have S(t)→ S∗(t) as t →∞.

The positive periodic solution (S∗(t), 0) corresponds to washout of the single population of microorganism from the
chemostat.
By the following theorem we give conditions for extinction of the microorganisms species:

Theorem 3.1. Periodic solution (S∗(t), 0) of system (2) is globally attractive if

γ S0 <
DKm(1− e−DT )
µme−Dτ − D

, (8)

where γ = TD.

Proof. Let (S(t), x(t)) be any solution of system (2) with initial condition (3). From (8), we have

µme−Dτ
γ S0

1−e−DT

Km +
γ S0

1−e−DT

< D.

Since p(z) = µme−Dτ z
Km+z

is strictly increasing for all z ≥ 0, we may choose a sufficiently small positive constant ε such that

µme−Dτη
Km + η

< D, (9)

where

η =
γ S0

1− e−DT
+ ε.

It follows from that the first equation of system (2) that S ′(t) ≤ −DS(t). Sowe consider the following impulse differential
inequalities:

S ′(t) ≤ −DS(t), t 6= nT , n ∈ N,
S(t+) = S(t)+ γ S0, t = nT , n ∈ N.

By using Lemma 2.1, we have

lim sup
t→∞

S(t) ≤
γ S0

1− e−DT
.

Hence, there exist a positive integer n1 and a arbitrarily small positive constant ε such that for all t ≥ n1T ,

S(t) ≤
γ S0

1− e−DT
+ ε =: η. (10)

From (10) and the second equation of (3), we get that, for t > n1T + τ ,

x′(t) ≤
µmηe−Dτ

Km + η
x(t − τ)− Dx(t). (11)

Consider the following comparison equation

dz(t)
dt
=
µmηe−Dτ

Km + η
z(t − τ)− Dz(t). (12)
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By Lemma 2.2 and (9), we obtain that

lim
t→∞

z(t) = 0.

Since x(s) = z(s) = φ2(s) > 0 for all s ∈ [−τ , 0], by the comparison theorem in differential equation and the nonnegativity
of solution (with x(t) ≥ 0), we have that x(t)→ 0 as t →∞.
Without loss of generality, we may assume that 0 < x(t) < ε for all t ≥ 0, by the first equation of system (2), we have

S ′(t) ≥ −
(
D+

µmε

δKm

)
S(t).

Then we have z̃1(t) ≤ S(t) and z̃1(t) → S∗(t), as ε → 0, where z̃1(t) is a unique globally asymptotically stable positive
periodic solution of

z ′1(t) = −
(
D+

µmε

δKm

)
z1(t), t 6= nT , n ∈ N,

z1(t+) = z1(t)+ γ S0, t = nT , n ∈ N,
z1(0+) = S(0+).

(13)

From (13), we have that, for nT < t ≤ (n+ 1)T ,

z̃1(t) =
γ S0e

−

(
D+ µmε

δKm

)
(t−nT )

1− e−
(
D+ µmε

δKm

)
T
.

By using comparison theorem of impulsive equation (see Theorem 3.1.1 in [24]), for any ε1 > 0 there exists such a T1 > 0
that, for t > T1,

S(t) > z̃1(t)− ε1. (14)

On the other hand, from the first equation of (2), it follows that

S ′(t) ≤ −DS(t).

Consider the following comparison system

z ′2(t) = −Dz2(t), t 6= nT , n ∈ N,
z2(t+) = z2(t)+ γ S0, t = nT , n ∈ N,
z2(0+) = S(0+).

(15)

Then we have

S(t) < z̃2(t)+ ε1 (16)

as t →∞ and z̃2(t) = S∗(t), where z̃2(t) is a unique positive periodic solution of (15).
Let ε→ 0, then it follows from (14) and (16) that

S∗(t)− ε1 < S(t) < S∗(t)+ ε1, (17)

for t large enough, which implies S(t)→ S∗(t) as t →∞. This completes the proof.

By Theorem 3.1, we can easily get the following Corollary 3.1.

Corollary 3.1. Periodic solution (S∗(t), 0) of system (3) is globally attractive if

TS0
(
µme−Dτ − D

)
Km(1− e−DT )

< 1. (18)

Clearly, the inequality (8) is equivalent to

S0T +
Km

µme−Dτ − D
e−DT −

Km
µme−Dτ − D

< 0.

Denote

f (T ) = S0T +
Km

µme−Dτ − D
e−DT −

Km
µme−Dτ − D

.

Since function f (T ) is continuous for all T ≥ 0, then we have

f ′(T ) ≤ 0, 0 ≤ T ≤
1
D
ln

DKm
S0(µme−Dτ − D)
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and

f ′(T ) > 0,
1
D
ln

DKm
S0(µme−Dτ − D)

< T <∞.

Also

f
(
1
D
ln

DKm
S0(µme−Dτ − D)

)
=
S0
D

(
1+ ln

DKm
S0(µme−Dτ − D)

)
−

Km
µme−Dτ − D

< 0, f (+∞) > 0.

Hence there exists a T0 ∈ ( 1D ln
DKm

S0(µme−Dτ−D)
,+∞) such that f (T0) = 0. We can clearly see that f (T ) < 0 for T ∈ (0, T0).

Further, we have the following corollary.

Corollary 3.2. There exists a T0 ∈
(
1
D ln

DKm
S0(µme−Dτ−D)

,+∞
)
such that when T ∈ (0, T0), then the periodic solution (S∗(t), 0) is

globally attractive.

In Section 3, we give the conditions for the population of microorganisms will eventually be washed out of the chemostat.
In the following, we investigate the permanence of the microorganisms species.

4. Permanence

Before starting our theorem, we give the following definition.

Definition 4.1. System (2) is said to be permanent if there exists a compact region D ⊂ intΩ such that every solution of
system (2) with initial conditions (3) will eventually enter and remain in region D.

Theorem 4.1. The system (2) is permanent if

γ S0 >
DKm(eDT − 1)
µme−Dτ − D

. (19)

Proof. Suppose that (S(t), x(t)) is any positive solution of system (2) with initial conditions (3). The second equation of
system (2) may be rewritten as follow:

x′(t) =
[
µme−Dτ

S(t)
Km + S(t)

− D
]
x(t)− µme−Dτ

d
dt

∫ t

t−τ

S(θ)x(θ)
Km + S(θ)

dθ. (20)

Define

V (t) = x(t)+ µme−Dτ
∫ t

t−τ

S(θ)x(θ)
Km + S(θ)

dθ.

Calculating the derivative of V (t) along the solution of (2), it follows from (20) that

dV (t)
dt
= D

[
µme−Dτ

S(t)
D(Km + S(t))

− 1
]
x(t). (21)

Let

m∗2 =
1
2
δKm
µm

(
1
T
ln
(
1+

TS0(µme−Dτ − D)
Km

)
− D

)
.

From inequality (19), it is clear thatm∗2 > 0. For thism
∗

2 , we can choose a positive constant ε1 small enough such that

µme−Dτ%
D (Km + %)

> 1, (22)

where

% =
γ S0e

−

(
D+

µmm∗2
δKm

)
T

1− e
−

(
D+

µmm∗2
δKm

)
T
− ε1 > 0.

For any positive constant t0, we claim that the inequality x(t) < m∗2 cannot hold for all t ≥ t0. Otherwise, there is a positive
constant t0, such that x(t) < m∗2 for all t ≥ t0. From the first and third equations of system (2), we have

S ′(t) ≥ −
(
D+

µmm∗2
δKm

)
S(t), t 6= nT ,

S(t+) = S(t)+ γ S0, t = nT .
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By Lemma 2.1, there exists such T1 ≥ t0 + τ , for t ≥ T1 that

S(t) >
γ S0e

−

(
D+

µmm∗2
δKm

)
T

1− e
−

(
D+

µmm∗2
δKm

)
T
− ε1 =: %. (23)

From (21) and (23), we have

dV (t)
dt

> D
[
µme−Dτ

%

D(Km + %)
− 1

]
x(t), t ≥ T1. (24)

Let

xl = min
t∈[T1,T1+τ ]

x(t).

We show that x(t) ≥ xl for all t ≥ T1. Otherwise, there exists a nonnegative constant T2 such that x(t) ≥ xl for
t ∈ [T1, T1 + τ + T2], x(T1 + τ + T2) = xl and x′(T1 + τ + T2) ≤ 0. Thus from the second equation of (2) and (22),
we easily see that

x′(T1 + τ + T2) >
[
µme−Dτ

%

Km + %
− D

]
xl

= D
[
µme−Dτ

%

D(Km + %)
− 1

]
xl

> 0,

which is a contradiction. Hence we get that x(t) ≥ xl > 0 for all t ≥ T1. From (24), we have

dV (t)
dt

> D
[
µme−Dτ

%

D(Km + %)
− 1

]
xl > 0,

which implies V (t) → +∞ as t → +∞. This is a contradiction to V (t) ≤ (1 + µmτe−Dτ )L. Therefore, for any positive
constant t0, the inequality x(t) < m∗2 cannot hold for all t ≥ t0.
On the one hand, if x(t) ≥ m∗2 holds true for all t large enough, then our aim is obtained. On the other hand, x(t) is

oscillatory aboutm∗2 .
Let

m2 = min
{
m∗2
2
,m∗2e

−Dτ
}
.

In the following, we shall show that x(t) ≥ m2. There exist two positive constants t̄, ω such that

x(t̄) = x(t̄ + ω) = m∗2
and

x(t) < m∗2, for t̄ < t < t̄ + ω.

When t̄ is large enough, the inequality S(t) > % holds true for t̄ < t < t̄+ω. Since x(t) is continuous and bounded and is not
effected by impulses,we conclude that x(t) is uniformly continuous. Hence there exists a constant T3 (with 0 < T3 < τ and T3
is independent of the choice of t̄) such that x(t) > m∗2

2 for all t̄ ≤ t ≤ t̄+T3. Ifω ≤ T3, our aim is obtained. If T3 < ω ≤ τ , from
the second equation of (2) we have that x′(t) ≥ −Dx(t) for t̄ < t ≤ t̄+ω. Thenwe have x(t) ≥ m∗2e

−Dτ for t̄ < t ≤ t̄+ω ≤
t̄ + τ since x(t̄) = m∗2. It is clear that x(t) ≥ m2 for t̄ < t ≤ t̄ + ω. If ω ≥ τ , then we have that x(t) ≥ m2 for t̄ < t ≤ t̄ + τ .
Thus, proceeding exactly as the proof for above claim, we can obtain x(t) ≥ m2 for t̄ + τ ≤ t ≤ t̄ + ω. Since the interval
[t̄, t̄+ω] is arbitrarily chosen (we only need t̄ to be large), we get that x(t) ≥ m2 for t large enough. In view of our arguments
above, the choice ofm2 is independent of the positive solution of (2) which satisfies that x(t) ≥ m2 for sufficiently large t .
By Lemma 2.3, we have x(t) ≤ L for t ≥ 0. Hence, from the first equation of (2), we have that,

S ′(t) ≥ −
(
D+

µmL
δKm

)
S(t).

Then we have S(t) ≥ z̃3(t), where z̃3(t) is unique a globally asymptotically stable positive periodic solution of

z ′3(t) = −
(
D+

µmL
δKm

)
z3(t), t 6= nT , n ∈ N,

z3(t+) = z3(t)+ γ s0, t = nT , n ∈ N,
z3(0+) = S(0+) > 0.
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Fig. 1. Dynamical behavior of system (2) with µm = 1.5, Km = 0.6,D = 1, δ = 10, T = 1, τ = 0, S0 = 0.7. (1) Time series of the concentration of the
unconsumed nutrient (S) for periodic oscillation; (2) Time series of the microorganism population (x) for extinction; (3) Phase portrait of the nutrient and
the microorganism population for global attractivity of the ‘microorganism-eradication’ periodic solution (S∗(t), 0).

There exists a ε > 0 small enough such that for sufficiently large t,

S(t) ≥ z̃3(t)− ε ≥
γ S0e

−

(
D+ µmL

δKm

)
T

1− e−
(
D+ µmL

δKm

)
T
− ε =: m1.

Set

D = {(S, x) ∈ R2
+
|m1 ≤ S(t) ≤ L,m2 ≤ x(t) ≤ L}.

Then D is a bounded compact region which has positive distance from coordinate axes. In view of our arguments above, one
obtains that every solution of system (2) with the initial condition (3) eventually enters and remains in the region D. The
proof is complete.

5. Numerical analysis and discussion

In this paper, we introduce a growth response time delay and pulse input nutrient into the Monod type chemostat
model, and theoretically analyze the influence of them on the extinction of the population of the microorganism and
the permanence of the system. To facilitate the interpretation of our mathematical findings and possible lab or field
implementation of themodel and to investigate the effect of the impulsive input nutrient by numerical analysis, we consider
the hypothetical set of parameter values as µm = 1.5, Km = 0.6,D = 1, δ = 10, T = 1, τ = 0.
Whether the microorganism is extinct or not is determined completely by the input amount of the substrate S0 for

the fixed period T . If S0 = 0.5, by Theorem 3.1, we know that when γ S0 = TDS0 = 0.5 < DKm(1−e−DT )
µme−Dτ−D

≈ 0.7588, the
‘microorganism-extinction’ periodic solution (S∗(t), 0) is globally attractive, the substrate S(t) presents periodic oscillation
and the microorganism x(t) is extinct as t → ∞, (see Fig. 1). If S0 = 2.1, by Theorem 4.1, we know that when
γ S0 = TDS0 = 2.1 > DKm(eDT−1)

µme−Dτ−D
≈ 1.9598, the system (2) is permanent, the substrate S(t) and the microorganism
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Fig. 2. Dynamical behavior of system (2) with µm = 1.5, Km = 0.6,D = 1, δ = 10, T = 1, τ = 0, S0 = 2.1. (4) Time series of the nutrient (S)
for permanence and periodic oscillation; (5) Time series of the microorganism population (x) for permanence and periodic oscillation; (6) Phase portrait
(T -periodic solution) of the nutrient and the microorganism population of system (2).

x(t) present periodic oscillation as t → ∞, (see Fig. 2). In this case, the microorganism is obtained. Obviously, if both the
continuous culture and the impulsive culture can obtain the microorganism, the latter is better than the former since the
impulsive culture can save the substrate.
From Theorems 3.1 and 4.1, we can see the extinction and permanence of the microorganism are dependent of the time

delay for growth response of the microorganism. Ultimately, when the time delay for growth response is too long, the
permanence of system disappears and the consumer population of themicroorganism dies out. This shows the sensitivity of
the model dynamics on time delay (growth response). The ultimate scenario makes intuitive biological sense: if it takes too
long to grow then the highest possible recruitment rate to the microorganism species (µme−Dτ ) will drop below the losing
rate to flow outD, leading to the extinction of x. This implies that time delay brings great effect on the dynamics behaviors of
themodel. Therefore, it is very important to consider time delay for the growth response of themicroorganism in chemostat
model.
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