Vegetation and climatic changes of SW China in response to the uplift of Tibetan Plateau

Qian-Qian Zhang, David K. Ferguson, Volker Mosbrugger, Yu-Fei Wang, Cheng-Sen Li

State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, PR China
Graduate University of the Chinese Academy of Sciences, Beijing, 100039, PR China
Institute of Palaeontology, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria
Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt, Germany

Corresponding author. Tel.: +86 10 6283 6436; fax: +86 10 6259 3385.
E-mail address: lics@ibcas.ac.cn (C.-S. Li).

Contents lists available at SciVerse ScienceDirect
Journal homepage: www.elsevier.com/locate/palaeo

A R T I C L E I N F O
Article history:
Received 25 November 2011
Received in revised form 23 August 2012
Accepted 24 August 2012
Available online 7 September 2012

Keywords:
Palaeovegetation
Climatic changes
Asian monsoon
Tibetan Plateau
Middle Miocene
SW China

A B S T R A C T
To understand the vegetation succession and climatic changes at the southeastern margin of the Tibetan Plateau in the Neogene, we reconstructed the Middle Miocene vegetation and climate based on palynological data from four localities, which are at different latitudes along the Ailao Mountains in Yunnan, southwest China. The palynological assemblages suggest that the vegetation there was composed of mixed evergreen and deciduous broad-leaved forests growing under subtropical conditions. Based on the palynological data, the palaeoclimatic parameters from the four localities are established. The new parameters were compared with those of the Late Miocene, of the Late Pliocene, and of today. The comparison revealed that the temperatures were obviously lower in the Middle Miocene than they are today. This suggested that the Ailao Mountains were not high enough to block the Asian Winter Monsoon in the Middle Miocene. The Middle Miocene vegetation at the southeastern edge of the Tibetan Plateau was also compared to that of Central Tibet. It would appear that the palaeoclimates at the southeastern edge of the Tibetan Plateau was warmer and wetter than in Central Tibet. In contrast to the Neogene cooling in Central Europe, the climate at the southeastern edge of the Tibetan Plateau has gradually warmed since the Middle Miocene. This phenomenon was most likely caused by the uplift of the Tibetan Plateau, which has succeeded in blocking the Asian Winter Monsoon since the Middle Miocene.

1. Introduction

During the Neogene, the global climate was characterised by a general cooling trend (Zachos et al., 2001; Mosbrugger et al., 2005). The ecosystem dramatically changed in Asia due to the collision of the Indian and Asian continental plates (Mulch and Chamberlain, 2006). The uplift of the Tibetan Plateau not only caused changes in the regional landforms, the climate and the biodiversity of China (Li and Fang, 1998; Kou et al., 2006), but also profoundly influenced the development of the Asian monsoons (Li, 1999; An et al., 2001, 2006). The East Asian Monsoon was established approximately at the Oligocene/Miocene boundary and experienced three times of intensification at approximately 15–13 Ma, 8 Ma and 3 Ma (Sun and Wang, 2005).

A large number of investigations have explored the Neogene climatic changes in North America (e.g., Wolfe, 1994, 1995; Retallack, 2007), Northern Australia (e.g., Kershaw and Wagstaff, 2001; Kershaw et al., 2007) and Europe (e.g., Mosbrugger et al., 2005; Böhme et al., 2007; Uhl et al., 2007; Utescher et al., 2009).

In China, quantitative reconstructions of the Neogene climate have been made in recent years (e.g., Yang et al., 2002; Liang et al., 2003; Hao et al., 2010; Qin et al., 2011). More work combining the Neogene vegetation and the climatic changes in China must be designed and carried out, especially with respect to the Tibetan Plateau and its surrounding areas. In this study, the fossil plants found in the central and southern regions of Yunnan were examined to help understand the Neogene climatic changes in SW China. Yunnan (97°39′–106°12′E, 21°9′–29°15′N) is located on the southeastern edge of the Tibetan Plateau, and its climatic is influenced by the Asian monsoons (Fig. 1a). It is widely accepted that the uplift of the Tibetan Plateau caused changes in the topography of Yunnan (BGMRPY, 1990; Zhang et al., 1997; Mulch and Chamberlain, 2006). The special geographical position and the abundant floral resources make Yunnan one of the most important regions for studying the climatic changes caused by the phased upheaval of the Tibetan Plateau (WGCPC, 1978; Xu et al., 2008; Xia et al., 2009).

The investigations of the Cenozoic mega-fossils from the Yunnan province are all taken to the field with the fossil plant collections of the Beijing Institute of Vertebrate Paleontology and Paleoanthropology, the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, and the Institute of Palaeontology, University of Vienna, Austria. The plant assemblages can be compared with those from North America (e.g., Wolfe, 1994, 1995) and Europe (e.g., Mosbrugger et al., 2005; Böhme et al., 2007; Uhl et al., 2007; Utescher et al., 2009).
2.1. Study site

The four coal-mines are located in Cenozoic coal-bearing basins in the central and southern parts of Yunnan. From north to south, they are the Dajie coal mine in Jingdong County (DJ), the Hexi coal mine in Zhenyuan County (HX), the Pojiao coal mine in Puwen Town (PJ) and the Shanggang coal mine in Mengla County (SG) (Fig. 1b).

2.1.1. The DJ coal mine

The DJ opencast coal mine (24°19′25.3″N, 101°03′31.2″E, 1328 ± 10 m a.s.l.) lies approximately 23 km south of Jingdong County, Yunnan Province. The sediments in the coal-mines belong to the Dajie Formation and are Miocene in age (Ge and Li, 1999). Seven palynological samples were collected here. The samples were taken to the middle portion of the Dajie Formation (Ge and Li, 1999). We obtained the Middle Miocene climatic parameters in all four basins. The results suggested that the climate in the Middle Miocene of Yunnan was cooler than that of today. This may have been caused by the uplift of the Tibetan Plateau as well as by the Asian Winter Monsoon (BGMRYP, 1990; Zhang et al., 1997; Kou et al., 2006).

2.1.2. The HX coal mine

The HX coal mine (23°35′10.2″N, 101°09′43.5″E, 980 m a.s.l.) is located at approximately 57 km south of the city of Zhenyuan. The sediments in the coal-mine also belong to the Dajie Formation (Ge and Li, 1999). The Dajie Formation in this area is 137–735 m thick (Ge and Li, 1999), while the sediments of the HX section exposed here are only 70 m thick. By comparing against the lithostratigraphic characters of the Dajie Formation, it has been suggested that the HX section belongs to the middle portion of the Dajie Formation. The section is overlain by Quaternary sandy conglomeratic sediments and is underlain by light grey mudstone. The section consists of 14 layers. Fifty-three palynological samples were collected from these layers. The samples were taken from the mudstone and lignite (Fig. 2b). The lithostratigraphic characters of the section are described as follows:

<table>
<thead>
<tr>
<th>Overlying strata: Quaternary sandy conglomeratic sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconformity</td>
</tr>
<tr>
<td>14 Coal with thin layers of mudstone at the top</td>
</tr>
<tr>
<td>13 Thick layers of light grey mudstone with thin layers of carbonaceous mudstone</td>
</tr>
<tr>
<td>12 Thick layers of brick-red mudstone</td>
</tr>
<tr>
<td>11 Thin layers of light grey mudstone and coal</td>
</tr>
<tr>
<td>10 Thick layers of light grey mudstone with coal of 5–10 cm thick in the middle portion (with leaves present)</td>
</tr>
<tr>
<td>9 Coal with thin layers of light grey mudstone</td>
</tr>
<tr>
<td>8 Thick layers of light grey mudstone and a small amount of silty mudstone</td>
</tr>
<tr>
<td>7 Light grey mudstone with carbonaceous mudstone of 20 cm thick at the bottom</td>
</tr>
<tr>
<td>6 Light grey mudstone</td>
</tr>
<tr>
<td>5 Mudstone with thin layers of coal</td>
</tr>
<tr>
<td>4 Thick layers of light grey mudstone and thin layers of silty mudstone</td>
</tr>
<tr>
<td>3 Thin layers of light yellow mudstone, silty mudstone and thin layers of coal</td>
</tr>
<tr>
<td>2 Coal</td>
</tr>
<tr>
<td>1 Thick light grey mudstone</td>
</tr>
<tr>
<td>Bottom unidentified</td>
</tr>
</tbody>
</table>

2.1.3. The PJ coal mine

The PJ coal mine is exposed at Puwen Town, Jinghong City in Yunnan Province. By comparing against the lithostratigraphic characters of the Dajie Formation, it has been suggested that the sediments of the coal-mine also belong to the middle portion of the Dajie Formation (Zheng et al., 1976; Ge and Li, 1999). Seven palynological samples were collected from seven bore cores, viz. PJ1 (22°27′44.5″N, 101°03′44.8″E, 881 ± 8 m a.s.l.), PJ2 (22°27′45.7″N, 101°03′45.7″E, 887 ± 8 m a.s.l.), PJ3 (22°27′46.1″N, 101°03′40.0″E, 898 ± 9 m a.s.l.), PJ4 (22°27′46.3″N, 101°03′41.2″E, 886 ± 9 m a.s.l.), PJ5 (22°27′42.5″N, 101°03′44.3″E, 884 ± 8 m a.s.l.), PJ6 (22°27′42.5″N, 101°03′46.1″E, 884 ± 7 m a.s.l.), PJ7 (22°27′40.7″N, 101°03′44.3″E, 884 ± 7 m a.s.l.). The samples were taken from the mudstone and lignite.

2.1.4. The SG coal mine

The SG coal mine (21°17′05.9″N, 101°41′22.3″E, 764 ± 7 m a.s.l.) is located in Mengla County, near the Sino-Laotian border. By comparing against the lithostratigraphic characters of the Dajie Formation, it has been suggested that the sediments of the coal-mine also belong to the middle portion of the Dajie Formation (Ge and Li, 1999). We collected 10 palynological samples here. The samples were taken from the lignite.

2.2. Methods

The palynological samples were analysed by the heavy liquid separation method (density = 2.0 g/ml) (Moore et al., 1991; Li and Du, 1999). The pollen grains and spores were observed under a Leica DM 2500 microscope (Fig. 3), and more than 16,800 palynomorphs were identified from the data from the literature (IBCAS, 1976; Zhang et al., 1976; IBCAS and SCIBCAS, 1982; Wang et al., 1995).
technique (Ferguson et al., 2007) was applied to show the good quality of images by using an FEI Quanta 200 environmental scanning electron microscope (Figs. 4, 5).

In this work, the palynomorph taxa were grouped according to the temperature requirements of their nearest living relatives (Jiménez-Moreno, 2006; J.F. Li et al., 2009; Qin et al., 2011). We use the Coexistence Approach (CA; Mosbrugger and Utescher, 1997) for the quantitative reconstruction of the Middle Miocene climate. The basic principle of CA is the assumption that the climatic requirement of a fossil taxon is similar to that of its Nearest Living Relative (NLR). Based on the geographic distributions of all NLRs (Wu and Ding, 1999), the climatic parameters and coexistence intervals of the fossil taxa in a palynoflora are obtained. The modern climatic parameters of NLRs used in CA are extracted from the surface meteorological data of China (average value of 30 years from 1951 to 1980) (IDBMC, 1984). Meanwhile, the MAT values of NLRs from the Palaeoflora Database were also adopted to obtain the seven climatic parameters (http://www.palaeoflora.de/). These are: MAT = the mean annual temperature, MWMT = the mean temperature of the warmest month, MCMT = the mean temperature of the coldest month, DI = the difference in temperature between the coldest and warmest months, MAP = the mean annual precipitation, MMaxP = the mean maximum monthly precipitation, and MMIP = the mean minimum monthly precipitation.

3. Results

3.1. Palynological assemblages

3.1.1. The DJ palynological assemblages

In the DJ section, the 60 palynomorphs consist of 37 angiosperms (belonging to 31 families and accounting for 30.51% of the total number of pollen and spores), nine gymnosperms (five families/12.06%), 13 pteridophytes (12 families/57.39%) and an alga (one family of Zygmenataceae 0.04%) (Fig. 6a, Table S1).

Three megathermic elements (Rutaceae, Sapindaceae and Symplocaceae), seven mega-mesothermic elements (Taxodiaceae, Castanopsis, Ilex, Hamamelidaceae, Araliaceae, Anacardiaceae and Myrtaceae), 16 mesothermic elements (e.g., Ginkgo, Alnus, Betula, Corylus, Quercus), two meso-microthermic elements (Pinus and Tsuga), and two microthermic elements (Abies and Picea), were recorded.

The palynological assemblage is divided into three zones from the bottom to the top (Fig. 6a):

Zone 1 (sample numbers DJ1–DJ23) The 39 palynomorphs in Zone 1 include 24 angiosperm taxa (20 families), seven gymnosperms (four families) and eight pteridophytes (seven families). This zone is characterised by the dominance of pteridophytic spores, with an average value of 59.36% of the total number of pollen and spores, including Polypodiaceae (43.45%), Pteris (10.94%), Athyrium (2.42%) and Hemionitidaceae (1.77%). The angiosperm pollen (30.45%) is dominated by Castanopsis (17.42%) and Alnus (10.09%). The gymnosperm pollen (10.18%) consists mainly of Pinus (9.72%).

In this zone, two megathermic elements (Rutaceae and Sapindaceae), four mega-mesothermic elements (Taxodiaceae, Ilex, Castanopsis and Hamamelidaceae), 15 mesothermic elements (e.g., Ginkgo, Alnus, Betula, Corylus, Quercus), two meso-microthermic elements (Pinus and Tsuga), and two microthermic elements (Abies and Picea), are detected (Table S1).

Zone 2 (sample numbers DJ24–DJ34) In Zone 2, the 31 sporomorphs comprise 21 angiosperms (18 families), five gymnosperms (three families) and five pteridophytes (five families). Compared with Zone 1, the percentages of pteridophytic spores (44.38%) decreased, while those of angiosperm pollen (37.94%) and gymnosperm pollen (17.68%) increased. The angiosperms are still dominated by Alnus (25.74%) and Castanopsis (7.76%). The gymnosperm pollen is mainly represented by Pinus (16.52%). As one of the most common pteridophytes, the spores of Polypodiaceae occur in a frequency of 29.78%, which is lower than that (43.45%) of Zone 1 (Table S1).

Two megathermic elements (Rutaceae and Sapindaceae), four mega-mesothermic elements (Castanopsis, Araliaceae, Anacardiaceae and Hamamelidaceae), 10 mesothermic elements (e.g., Alnus, Betula, Juglans), two meso-microthermic elements (Pinus and Tsuga), and only one microthermic element (Abies), are present in this zone (Table S1).

Zone 3 (sample numbers DJ35–DJ57) In Zone 3, the 38 palynomorphs include 22 angiosperms (19 families), five gymnosperms (four families), 11 pteridophytes (10 families) and an alga (Zygmenataceae). Pteridophytic spores still predominate in this zone and reach an average value of 65.01%. Angiosperm and gymnosperm pollen respectively represent 22.82% and 11.97%, and both are less common than in Zone 2 (Table S1).

Three megathermic elements (Rutaceae, Sapindaceae and Symplocaceae), five mega-mesothermic elements (Taxodiaceae, Myrtaceae, Ilex, Castanopsis and Araliaceae), 11 mesothermic elements (e.g., Alnus, Betula, Corylus), two meso-microthermic elements (Pinus and Tsuga) are detected in this zone, but no microthermic elements are present.

3.1.2. The HX palynological assemblages

In the HX section, the 45 palynomorphs consist of 31 angiosperms (belonging to 23 families and accounting for 45.91% of the total number of pollen and spores), four gymnosperms (two families/8.77%), and 10 pteridophytes (nine families/45.32%) (Fig. 6b, Table S2).

Two megathermic elements (Meliaceae and Sapindaceae), six mega-mesothermic elements (Ilex, Castanopsis, Myrtaceae, Araliaceae, Hamamelidaceae and Anacardiaceae), 19 mesothermic elements (e.g., Alnus, Betula, Corylus, Quercus), two meso-microthermic elements (Pinus and Tsuga), and one microthermic element (Abies) is present.

The palynological assemblage is divided into five zones from the bottom to the top (Fig. 6b):

Zone 1 (sample numbers HX1–HX10) In Zone 1, there are 23 palynomorphs consisting of 15 angiosperms (52.5%), four gymnosperms (9.33%) and four pteridophytes (nine families/45.32%) (Fig. 6b, Table S2).

In this zone, only one megathermic element (Meliaceae), two mega-mesothermic elements (Ilex and Castanopsis), nine mesothermic elements (e.g., Alnus, Betula), two meso-microthermic elements (Pinus and Tsuga), and one microthermic element (Abies) are present.

Zone 2 (sample numbers HX11–HX18) In Zone 2, the 18 palynomorphs comprise 10 angiosperms (six families), three gymnosperms (two families) and five pteridophytes (five families) (Table S2). The angiosperm pollen still dominates in this zone and reaches up to 65.59%. However, Alnus (45.02%) replaces Castanopsis (28.75%), Alnus (12%) and Fagaceae (7.08%). Gymnosperms are represented by Pinus (8.5%), Tsuga (0.42%), Ephedra (0.33%) and Abies (0.08%). Pteridophytic spores mainly belong to the Polypodiaceae (30.42%) and Pteris (6.42%).

In this zone, only one megathermic element (Meliaceae), two mega-mesothermic elements (Ilex and Castanopsis), nine mesothermic elements (e.g., Alnus, Betula), two meso-microthermic elements (Pinus and Tsuga), and one microthermic element (Abies) are present.

Zone 3 (sample numbers HX19–HX31) In Zone 3, the 27 palynomorphs consist of 16 angiosperms (13 families), four gymnosperms (two families) and seven pteridophytes (six families). Compared with Zone 2, the percentage of angiosperm pollen (51.03%) decreased, but gymnosperm pollen (19.28%) increased. Castanopsis (40.06%) and Alnus (7.87%) continue to dominate in this zone. Pinus
(16.04%) and Tsuga (3.05%) are present at higher frequencies in this zone than in either Zones 1 or 2 (Table S2).

In Zone 3, one megathermic element (Sapindaceae), three mega-mesothermic elements (Ilex, Castanopsis and Myrtaceae), eight mesothermic elements (e.g., Alnus, Betula), two meso-microthermic elements (Pinus and Tsuga), and one microthermic element (Abies) is discovered.

Zone 4 (sample numbers HX32–HX46) In Zone 4, the 29 palynomorphs consist of 16 angiosperms (13 families), four gymnosperms (two families) and nine pteridophytes (eight families). This zone is characterised by the dominance of pteridophytic spores, with an average value of 67.16% of the total number of pollen and spores, including Polypodiaceae (43.90%) and Pteris (20.40%). Angiosperms (29.28%) are dominated by Castanopsis (14.06%) and Alnus (13.59%). The gymnosperm pollen (3.57%) is represented mainly by Pinus (2.46%) and Tsuga (0.91%).

One megathermic element (Sapindaceae), five mega-mesothermic elements (Ilex, Castanopsis, Araliaceae, Hamamelidaceae and Anacardiaceae), eight mesothermic elements (e.g., Alnus, Corylus), two meso-microthermic elements (Pinus and Tsuga), and one microthermic element (Abies) is found in this zone (Table S2).

Zone 5 (sample numbers HX47–HX53) In Zone 5, the 28 palynomorphs belong to 17 angiosperms (13 families representing 49.29% of the total number of pollen and spores), three gymnosperms (two families/5.40%), and eight pteridophytes (seven families/45.31%). Compared with Zone 4, the angiosperms, which replace the pteridophytes, again dominate in the assemblage. The percentage of Alnus (28.86%) is higher (13.59%) than in Zone 4 (Table S2).
No megathermic element appears in this zone. There are four mega-mesothermic elements (Ilex, Castanopsis, Myrtaceae and Anacardiaceae), seven mesothermic elements (e.g. Alnus, Corylus), two meso-microthermic elements (Pinus and Tsuga), and no microthermic element.

3.1.3. The PJ palynological assemblage

In the PJ coal mine, the 33 palynomorphs consist of 25 angiosperms (belonging to 22 families and accounting for 61.66% of the total number of pollen and spores), three gymnosperms (three families/1.05%) and five pteridophytes (five families/31.82%) (Table S3).
One megathermic elements (Meliaceae), two mega-mesothermic elements (Castanopsis and Myrtaceae), nine mesothermic elements (e.g., Betula, Corylus), and two meso-microthermic elements (Pinus and Tsuga), are present. The microthermic elements are missing.

3.1.4. The SG palynological assemblage

In the SG coal mine, the 26 palynomorphs consist of 18 angiosperms (belonging to 12 families and accounting for 91.46% of the total number of pollen and spores), four gymnosperms (three families/3.49%) and four pteridophytes (four families/4.94%) (Table S4).

There are two megathermic elements (Rutaceae and Meliaceae), three mega-mesothermic elements (Taxodiaceae, Castanopsis and Anacardiaceae), 10 mesothermic elements (e.g., Alnus, Juglans), and two meso-microthermic elements (Pinus and Tsuga), while the microthermic elements are missing.

3.2. Palaeovegetation

The number of angiosperms, gymnosperms and pteridophytes taxa in these four localities (e.g., DJ, HX, PJ and SG) and their percentages of pollen/spores are shown in Fig. 7. Generally, the angiosperms were dominant in the four localities with a decrease in the number of taxa from 37 to 31 to 25 to 18 from north to south, but the percentages of angiosperm taxa in the palynofloras at each locality are not significantly different (63% at DDJ, 69% at HX, 76% at PJ and 69% at SG). In this case, an increase in the angiosperm pollen numbers...
from 30% to 46% to 61% to 92% from north to south may reflect the luxuriance of angiosperms in southern Yunnan growing under more congenial climatic conditions. *Alnus* was the major element of the deciduous broad-leaved forest, followed by *Betula, Corylus, Ulmus, Juglans, Castanea,* and *Carya. Castanopsis* represented the main element of the evergreen broad-leaved forest, followed by *Palmae, Myrtaceae, Rutaceae,* and *Proteaceae.* Although both *Alnus* and *Castanopsis* dominated the angiosperms in DJ, HX and SG, *Alnus* was missing at PJ.

The palynological assemblages suggest that the Middle Miocene vegetation of the four localities was composed of mixed evergreen and deciduous broad-leaved forests with some conifers growing under subtropical conditions. The vegetation in central and southern Yunnan in the Middle Miocene showed variations, based on the data obtained from this work on the four localities. The high percentages (approximately 9 to 12%) of coniferous pollen at DJ and HX may suggest the presence of zonal vegetation in the mountains surrounding these two localities. The evergreen broad-leaved forests with mega-mesothermic and megathermic elements are most likely to have occupied the valleys and basins. The deciduous broad-leaved forests with mesothermic elements most likely grew on the hillsides at low altitudes. The coniferous trees are likely to have occurred on the mountains at high altitudes (Fig. S1), as in recent Yunnan vegetation. The high density of the forests resulted in a shady undergrowth with a high humidity, which was conducive to the growth of ferns at DJ, HX and PJ. The coniferous pollen in PJ and SG was only present at low percentages (from 1 to 3.5%), and the pollen may have been transported there by wind. The altitude of the localities of PJ and SG may not have been as high as that of DJ and HX. As a result, the vertical vegetation zones there were less well-developed.

The palynological assemblages suggest that the Middle Miocene vegetation of the four localities was composed of mixed evergreen and deciduous broad-leaved forests with some conifers growing under subtropical conditions. The vegetation in central and southern Yunnan in the Middle Miocene showed variations, based on the data obtained from this work on the four localities. The high percentages (approximately 9 to 12%) of coniferous pollen at DJ and HX may suggest the presence of zonal vegetation in the mountains surrounding these two localities. The evergreen broad-leaved forests with mega-mesothermic and megathermic elements are most likely to have occupied the valleys and basins. The deciduous broad-leaved forests with mesothermic elements most likely grew on the hillsides at low altitudes. The coniferous trees are likely to have occurred on the mountains at high altitudes (Fig. S1), as in recent Yunnan vegetation. The high density of the forests resulted in a shady undergrowth with a high humidity, which was conducive to the growth of ferns at DJ, HX and PJ. The coniferous pollen in PJ and SG was only present at low percentages (from 1 to 3.5%), and the pollen may have been transported there by wind. The altitude of the localities of PJ and SG may not have been as high as that of DJ and HX. As a result, the vertical vegetation zones there were less well-developed. The angiosperms
dominated the vegetation at SG, while the evergreen and deciduous broad-leaved forests were widespread. The high percentage of *Alnus* pollen at SG may reflect its riparian habitat.

Because both mega-mesothermic and megathermic elements grew at these localities, the climate must have been somewhere from warm to hot in the four localities during the Middle Miocene. Xerophilous plants (*Ephedra*) were found at the four localities, which may suggest that there were dry habitats in some areas. Influenced by the topography, the local climate would have varied from warm-humid to warm-dry conditions in central and southern Yunnan in the Middle Miocene.

3.3. Palaeoclimate

By applying the CA, we obtained the climatic parameters for DJ, HX, PJ and SG.

3.3.1. The palaeoclimate at DJ

Based on the nearest living relatives (NLRs) of 45 spermatophytic taxa, we obtained the climatic parameters of the whole section of DJ (Fig. S2). They are MAT = 11.5 °C (delimited by Palmae)–17.3 °C (*Cryptomeria*); MWMT = 19.8 °C (*Carya*)–28.0 °C (*Araliaceae*); MCMT = −0.2 °C (*Palmae*)–5.9 °C (*Ephedra*); DT = 12.3 °C (*Picea*)–24.6 °C (*Proteaceae*); MAP = 793.9 mm (*Palmae*)–1389.4 mm (*Ephedra*); MMaP = 172.4 mm (*Hamamelidaceae*)–245.2 mm (*Ephedra*) and M MiP = 6.9 mm (*Carya*)–22.1 mm (*Pterocarya*).

Compared with the modern meteorological data at Jingdong (Table 1), it is evident that the climate at DJ was colder in the Middle Miocene than today (MAT: 14.6 °C compared with comp. 18.3 °C; DT: 18.5 °C; 12.3 °C), with a slightly warmer summer (MWMT: 23.9 °C comp. 23.2 °C) but a much colder winter (MCMT: 2.9 °C comp. 10.9 °C).

We also obtained the seven climatic parameters of the three zones (Table S5). Considering the changes of climatic parameters in these three zones, it would seem that it was warmer in the periods of Zone 3 than in Zones 1 and 2, with approximately the same precipitation in all three zones and only a little more in Zone 2.

Fig. 6. The pollen diagrams showing the percentage values of the main taxa. a. The DJ section. b. The HX section.

Fig. 7. The percentage values of angiosperms, gymnosperms and pteridophytes from the four coal mines.
3.3.2. The palaeoclimate at HX

Based on 35 spermatophytic taxa, we procured the climatic parameters of the whole section of HX (Fig. S3). They are MAT = 11.5 °C (Palmae)–20.8 °C (Tilia); MMWT = 18.7 °C (Palmae)–28.0 °C (Araliaceae); MCMT = −0.2 (Palmae)–5.9 °C (Ephedra); DT = 12.1 °C (Ephedra)–26.0 °C (Palmae); MMaP = 793.9 (Palmae)–1389.4 mm (Ephedra); MMiP = 172.4 (Hamamelidaceae)–245.2 mm (Ephedra) and MMIP = 5.7 (Abies)–22.1 mm (Pterocarya). By comparison with the modern meteorological data from Yunnan (Table 1), it is obvious that the climate at HX in the Middle Miocene was colder and drier than today (MAT: 13.2 °C; MAP: 1091.7 mm). We also obtained the seven climatic parameters of the whole section of DJ, HX, PJ and SG (16.7 °C). As a result, the median value of MAT is 13.2 comp.19.1 °C; MAP: 1091.7 comp. 1243.6 mm).

3.3.3. The palaeoclimate at PJ

Based on 28 spermatophytic taxa, we obtained the climatic parameters of the PJ section (Fig. S4, Table S5). They are MAT = 11.5 °C (Palmae)–21.9 °C (Tsuga); MMWT = 18.7 °C (Palmae)–28.0 °C (Araliaceae); MCMT = −0.2 (Palmae)–5.9 °C (Ephedra); DT = 12.1 °C (Ephedra)–24.6 °C (Proteaceae); MAP = 793.9 °C (Palmae)–1389.4 mm (Ephedra); MMaP = 139 (Proteaceae)–245.2 mm (Ephedra) and MMIP = 4.9 (Proteaceae)–23.6 mm (Ephedra). A comparison with the modern meteorological data from Simao (Table 1) suggests that the climate at PJ possessed a colder winter and a lower precipitation in the Middle Miocene than today (MCMT: 2.9 °C; MAP: 793.9 to 1389.4 mm).

3.3.4. The palaeoclimate at SG

Based on 22 spermatophytic taxa, we obtained the climatic parameters of the SG section (Fig. S5, Table S5). They are MAT = 11.5 °C (Palmae)–21.9 °C (Tsuga); MMWT = 18.7 °C (Palmae)–28.5 °C (Gramineae); MCMT = −0.2 (Palmae)–5.9 °C (Ephedra); DT = 12.1 °C (Ephedra)–26.0 °C (Palmae); MAP = 793.9 °C (Palmae)–1389.4 mm (Ephedra); MMaP = 137.3 (Castanopsis)–245.2 mm (Ephedra) and MMIP = 4.5 (Pterocarya)–22.1 mm (Pterocarya). A comparison with the modern meteorological data from Mengla (Table 1), shows that it was colder and drier in the Middle Miocene than today at SG (MAT 13.2 comp. 21.0 °C; MAP 1091.7 comp. 1540.2 mm) and that it was more similar to the climates at HX and PJ.

4. Discussion

4.1. The Middle Miocene climate at the southeastern edge of the Tibetan Plateau

The climatic parameters obtained by the method of CA in this work demonstrate the similarity of the climates at all four localities. Except for the MAT, the parameters there possess very similar coexistences, i.e., MMWT from 18.7 to 28.5 °C, MMCT from −0.2 to 5.9 °C, DT from 12.1 to 26 °C, MAP from 793.9 to 1389.4 mm, MMaP from 137.3 to 245.2 mm and MMIP from 4.5 to 23.6 mm (Fig. S6). The minimum values (11.5 °C) of MAT at the four localities are the same, but the maximum value is lower (14.4 °C) at DJ than at the other three localities (16.2–16.7 °C). As a result, the median value of MAT is 1.8 °C lower at DJ (14.4 °C) than at HX and is 2.3 °C lower than at PJ and SG (16.7 °C).

The latitudinal difference between DJ (24°19′25.3″N) and SG (21°17′05.9″N) is approximately 3°. According to the latitudinal temperature gradient, which was approximately 0.3 °C per degree in the Early to Middle Miocene (J.F. Li et al., 2009), the temperature difference would be approximately 0.9 °C, i.e., the MAT should be 0.9 °C lower at DJ than at SG, whereas in fact it was 2.3 °C lower at DJ than at SG.

It appears that the uplift of the Ailao Mountains in the Early to Middle Miocene (J.F. Li et al., 2009), the temperature difference would be approximately 0.9 °C, i.e., the MAT should be 0.9 °C lower at DJ than at SG, whereas in fact it was 2.3 °C lower at DJ than at SG.

On the slopes and on the top of the mountain there are temperate forests, as at Yuanmou today. The interaction of the uplift of mountains and the erosion of rivers in the Yunnan Plateau produced the dry-hot valleys over the course of time. The topography of the basins, mountains, and valleys influenced the local climates there, as at HX and PJ and SG.

In comparison with the present meteorological data from the southeastern edge of the Tibetan Plateau, it is evident that the climate was colder, with less precipitation in the Middle Miocene than today (Table 1).

Zachos et al. (2001) suggested that the temperature was higher in the Miocene than today as a result of global cooling during the Cenozoic. In contrast, in the study area the temperatures in the Miocene
were lower than they are today. This observation raises a question regarding the cause of this phenomenon.

The uplift of Tibet influenced the topography and climate in East Asia, and especially changed the landscapes in southwestern China, including Yunnan, Sichuan and Guizhou; further, the uplift initiated the monsoon system in Asia (Li, 1999; An et al., 2001, 2006). During the Middle Miocene, the topography in Yunnan and the monsoonal system in East Asia had already developed to some degree (Li, 1999; An et al., 2001; Sun and Wang, 2005; An et al., 2006).

The areas studied in this paper are situated on the southwestern side of the Ailao Mountains (Fig. S7). The Ailao Mountain range is approximately 800 km long, and extends in a NW–SE direction, with an average elevation of over 2000 m with the highest peak 3166 m above sea level (Wang, 2002). The mountain range forms a natural boundary separating the eastern region and the southwestern region of the Yunnan Plateau, and the mountain range plays an important role in influencing the temperature and rainfall (Wang, 2002; Hao et al., 2009).

The Ailao Mountains have gone through four stages to attain their present altitudes (Wang et al., 2006) (Fig. 8). In the first stage, in the Early Miocene (approximately 22–17 Ma), orogenic movement caused the uplift of the Ailao Mountains. Second, in the late Early Miocene and the Middle Miocene (approximately 20–10 Ma), the mountains were eroded into a landform with low relief. In the third stage in the late Middle Miocene and the early Late Miocene (approximately 13–9 Ma), the landscape was changed by the regional uplift of the mountains, coevally with the incision of river systems. Finally, during the Late Cenozoic (approximately 5 Ma), the mountains were uplifted strongly.

It is presumed that the Ailao Mountains were not high enough to stop the winter monsoon or to reduce its influence on the southwestern slope of the mountains in the Middle Miocene. It is evident that the MCMTs in these areas were lower in the Middle Miocene than today (2.9 comp. 10.9–15.2 °C). It would seem that recently the high elevation of the Ailao Mountains either stops or reduces the winter monsoon and also causes the warm winter. For the same reason, the Ailao Mountains also block the moist airstream of the summer monsoon from the Indian Ocean, causing more rainfall to fall on the southwestern slope of the mountains today than in the Middle Miocene times (1087–1540 comp. 1092 mm). The other reason for the higher MAT today than in the Middle Miocene is that the summer monsoons were less intense (Li, 1999; An et al., 2001; Sun and Wang, 2005; An et al., 2006).

The uplift of the Ailao Mountains was caused by the tectonic movement of the neighbouring Tibetan Plateau. The uplift of the Tibetan Plateau changed the landscapes and climates of Yunnan considerably (Yang et al., 2010).

4.2. Comparison with the Middle Miocene vegetation and climate of the Tibetan Plateau

Two megathermic elements (Palmae and Meliaceae), two mega-mesothermic elements (Castanopsis and Myrtaceae), eight mesothermic elements (e.g., Betula, Corylus), and two meso-microthermic elements (Pinus and Tsuga), are present. The microthermic elements are missing.

Fig. 8. The four stages of the evolution of the Ailao Mountains (according to Wang et al., 2006).

Fig. 9. The changes in the Late Cenozoic palynological assemblages of the Tibetan Plateau and the surrounding areas (Modified from Wu et al., 2006).
The Middle Miocene climate of the Tibetan Plateau was inferred from reconstructing the palaeovegetation. Wu et al. (2006) reported pollen assemblages from the Nagqu Basin, in the central Tibetan Plateau of the Middle-Late Miocene age. This report suggested that the vegetation there was a needle- and broad-leaved mixed forest with various herbs growing in the understory. Megatherm and mega-mesotherm were hardly represented, while the conifers and herbs were increasing in abundance. Mesothermic and meso-microthermic trees such as *Pinus*, *Celtis* and *Quercus* were dominant. The most common herb was Chenopodiaceae, while aquatic and/or marsh plants were rare. The pollen assemblages indicate that a cool and dry climate prevailed on the central Tibetan Plateau in the Middle Miocene. Based on a further comparison (Wu et al., 2006), it is clear that the megatherm and mega-mesotherm of the Tibetan Plateau decreased sharply since the Early Miocene. For example, the megatherm and mega-mesotherm decreased from 3% to 5% (Early Miocene) to 0.5% (Middle Miocene) of the total numbers of pollen and spores in the Xining Basin and were also absent in the Late Miocene. The megatherm and mega-mesotherm decreased from 7% (Early Miocene) to 1% (Middle–Late Miocene) on the central Tibetan Plateau and disappeared there by the Pliocene. However, the megatherm and mega-mesotherm were still living in the area surrounding the Tibetan Plateau during the Neogene. For example, the megatherm and mega-mesotherm increased from 10% to 12% in the Miocene to 15% in the Pliocene (Table 1). In this way, the temperature curves of the southeastern edge of the Tibetan Plateau were obtained (Fig. 9).

According to our study, the Middle Miocene vegetation at the southeastern edge of the Tibetan Plateau had megathermic/mega-mesothermic elements (e.g., Palmae, Rutaceae, Meliaceae and Costanopsis) and hygrophilous elements (e.g., Ahnus and Taxodiaceae). The percentage of megatherm and mega-mesotherm (Dj: 14.84%, HX: 24.06%, Pf: 35.46%, SG: 18.00% of the total number of pollen and spores) was much higher than on the central Tibetan Plateau (1%) (Fig. 6), which suggests that the Middle Miocene climate at the southeastern edge of the Tibetan Plateau was warmer and wetter than that of the plateau itself. This phenomenon could be caused by the strong uplift of the mountains of the central Tibetan Plateau.

The opinions on the elevations of the Tibetan Plateau in the Middle Miocene differ strongly. Some researchers suggest that the Tibetan Plateau was not uplifted to its present altitude in the Middle Miocene (Li, 1999; An et al., 2001; Jia et al., 2004; An et al., 2006), while other investigations have suggested that the southern Tibetan Plateau has not significantly changed in elevation since the Middle Miocene era (Spicer et al., 2003; Song et al., 2010). However, both factions believe that the Tibetan Plateau was uplifted in the Middle Miocene. Based on the pollen evidence, the elevation of the Tibetan Plateau in the Miocene was approximately 3000–3150 m (Song et al., 2010). On the other hand, the southeastern edge of the Tibetan Plateau was uplifted strongly and successively during the last 1.4 Ma (Yang et al., 2010). This has been confirmed by a comparison of the vegetation between the central Tibetan Plateau and the southeastern edge of the plateau.

4.3. Neogene climatic changes at the southeastern edge of the Tibetan Plateau and a comparison with Central Europe

The new parameters were compared with the climatic data from Lühe and Xialongtan (Late Miocene) (Xu et al., 2008; Xia et al., 2009), Eryuan, Yangyi and Longling (Late Pliocene) (Kou et al., 2006) and Jingdong, Zhenyuan, Simao and Mengla at present (IDBMC, 1984) (Table 1). In this way, the temperature curves of the southeastern edge of the Tibetan Plateau were obtained (Fig. 10b).

A comparison with the global marine temperature record (Zachos et al., 2001) and the climate of Central Europe (Mosbrugger et al., 2005) (Fig. 10a) reveals that: 1) in contrast to the Neogene cooling (Zachos et al., 2001; Mosbrugger et al., 2005), the MAT curve of the southeastern edge of the Tibetan Plateau exhibited a general warming trend. In Yunnan, the MAT from the Middle Miocene to the Late
Miocene to the Late Pliocene to today increased (13.2–14.6 comp. 17.1–17.9 comp. 15.9–20.4 comp. 17.7–21 °C) (Table 1). 2) The MWMT curves of the southeastern edge of the Tibetan Plateau and Central Europe did not change significantly after the Middle Miocene. 3) The MCMT curves from the southeastern edge of the Tibetan Plateau and Central Europe display different trends. The MCMT values increased markedly since the Middle Miocene on the southeastern edge of the Tibetan Plateau, while they decreased in Central Europe.

The climate at the southeastern edge of the Tibetan Plateau gradually warmed over the course of 15 million years. The change in MAT is in apparent contradiction to the climatic changes of Central Europe, although in accordance with the climatic changes of Northern Australia. According to Kershaw and Wagstaff (2001), Northern Australia shows an increasing temperature from the Miocene as a result of its movements into the tropical latitudes. In Yunnan, the palaeolatitude and palaeolatitude hardly changed following the Middle Miocene (Table 1). The climate warming trend in Yunnan (southeastern edge of the Tibetan Plateau) appears to be linked to the successive uplift of the Tibetan Plateau, which eventually created an effective barrier to the Asian Winter Monsoon.

The uplift of the Tibetan Plateau, which caused the uplift of the Yunnan Plateau and created the complex topography in Yunnan (Yang et al., 2010), influenced the climatic changes in Yunnan during the Neogene. It resulted in the warmer conditions observed in Yunnan today.

5. Conclusions

The comprehensive palaeo-vegetational and palaeoclimatic studies of the pollen samples from the Dajie Formation in Yunnan, at the southeastern edge of the Tibetan Plateau, lead to the following conclusions:

1. The vegetation in Yunnan in the Middle Miocene era was composed of mixed evergreen and deciduous broad-leaved forests with some conifers.

2. The Middle Miocene vegetation in Yunnan suggests a subtropical climate.

3. The Middle Miocene climate in Yunnan was obviously cooler than today. It suggests that the Ailao Mountains were not high enough to block the Asian Winter Monsoon in the Middle Miocene.

4. The Middle Miocene vegetation at the southeastern edge of the Tibetan Plateau was compared with that of the central Tibetan Plateau. It appears that the palaeoclimate at the southeastern edge of the plateau was warmer and wetter than in central Tibet.

5. In contrast to the Neogene cooling in Central Europe, the climate around the southeastern edge of the Tibetan Plateau became gradually warmer since the Middle Miocene, with increases in MAT and MCMT. The increase of MCMT might signal the weakening of the winter monsoon. This phenomenon was most likely caused by the uplift of the Tibetan Plateau, which has succeeded in blocking the Asian Winter Monsoon since the Middle Miocene.

Acknowledgements

The authors would like to thank Senior Engineer Nai-Qiu Du at the Institute of Botany, CAS, Beijing, China, for her help with pollen identifications. We are also grateful to Mr. Julien Cillis at the Royal Belgian Institute of Natural Sciences, Brussels, Belgium, for his technical assistance with SEM, and Dr. Nilamber Awasthi, Ex-Deputy Director at the Birbal Sahni Institute of Palaeobotany, Lucknow, India, for his useful suggestions on the manuscript. This research was supported by the International S & T Cooperation Project of China No. 2009DFA32210, the program of the National Science Foundation of China (NSFC) No. 41072022, No. 41210001, the key program of NSFC No. 30530050 and the National Basic Research Program of China (2004CB720205).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.palaeo.2012.08.009.

References

