网站地图 | 联系我们 | 管理系统 | 登录邮箱 | 内网办公 | English | 中国科学院    
首页 所况介绍 机构设置 科研成果 研究队伍 合作交流 研究生教育 党群园地 科学传播
 
 
 当前位置:首页 >>> 论文库

Specific leaf area predicts dryland litter decomposition via two mechanisms

作 者:Liu GF, Wang L, Jiang L, Pan X, Huang ZY*, Dong M, Cornelissen JHC
影响因子: 5.813
刊物名称: Journal of Ecology
出版年份: 2018
卷: 106  期: 1   页码: 218-229

文章摘要 : 

  1. Litter decomposition plays important roles in carbon and nutrient cycling. In dryland, both microbial decomposition and abiotic degradation (by UV light or other forces) drive variation in decomposition rates, but whether and how litter traits and position determine the balance between these processes is poorly understood.
  2. We investigated relationships between litter quality and their decomposition rates among diverse plant species in a desert ecosystem in vertically contrasting positions representing distinct decomposition environments driven by different relative contributions of abiotic and microbial degradation. Thereto, leaf litter samples from 17 desert species were sealed into litterbags and placed on the soil surface under strong solar exposure vs. shade conditions, or buried in the soil at 10 cm depth, for a whole year.
  3. Litter decomposition rates were 21% and 17% higher in burial and light-exposed treatments, respectively, than those in shade. Leaf traits, i.e. specific leaf area (SLA), litter C:N ratio and lignin concentration could predict litter decomposition to some degree, but their predictive power was dependent on litter position. However, multiple linear regressions showed that SLA, litter C and P significantly affected k values for leaf litter decomposition besides litter position, with SLA standing out as a strong determinant of litter decomposition rate as related either to solar radiation or the environment below the soil surface. Furthermore, the interspecific differences in litter decomposition rates decreased over time, implying that afterlife effects of leaf traits on decomposition were attenuated.
  4. Synthesis. These findings suggest that abiotic photodegradation and soil burial mediated microbial decomposition could be responsible for higher than expected litter turnover in dryland. They point to a dual role of specific leaf area (SLA) as a promotor of decomposition rates: via relative exposure of the leaf surface to abiotic factors such as UV light vs. to soil moisture and microbes under soil burial.

| 本站导航 | 园区风光| 联系我们 |
版权所有:中国科学院植物研究所 地址:北京市海淀区香山南辛村20号 邮编:100093 电话:010-62590835
网站备案号:京ICP备05002828号       文保网安备案号:1101080078