网站地图 | 联系我们 | 管理系统 | 登录邮箱 | 内网办公 | English | 中国科学院    
首页 所况介绍 机构设置 科研成果 研究队伍 合作交流 研究生教育 党群园地 科学传播
 
 
 当前位置:首页 >>> 论文库

Leaching of organic carbon from grassland soils under anaerobiosis

作 者:Zhu EX, Liu T, Zhou L, Wang SM, Wang X, Zhang ZH, Wang ZW, Bai YF, Feng XJ*
影响因子: 5.290
刊物名称: Soil Biology & Biochemistry
出版年份: 2020
卷: 141  期:    页码: 107684

文章摘要 : 

The projected increase of extreme precipitation and freeze-thawing events may lead to frequent occurrence of anaerobiosis in upland soils, which has significant impacts on biogeochemical processes affecting soil carbon loss. However, compared to mineralization, the impacts of anaerobiosis (potentially accompanied by fermentation) on soil organic carbon (SOC) leaching is limited. Here we conducted microcosm and intact soil column incubation experiments to examine processes influencing SOC leaching from four typical Chinese grassland soils under simulated anaerobiosis. Compared to aerobiosis, non-fermenting anaerobiosis increased the pH, dissolved phenol concentrations and aromaticity of soil leachates. In contrast, fermenting anaerobiosis induced acetate accumulation, lowered pH, stimulated phenol oxidative activity and generally decreased aromaticity in soil leachates in both microcosm and soil column experiments relative to aerobiosis. Both anaerobiosis potentially induced a strong release of dissolved organic carbon (DOC) accompanied by iron and nitrate reduction, especially with fermentation. However, DOC in soil leachates decreased in alpine subsoils under fermentation relative to aerobiosis. This interesting phenomenon was mainly attributed to (i) minimal iron reduction and dissolution in the alpine subsoils and (ii) enhanced DOC oxidation by elevated phenol oxidative activity in the fermentation relative to aerobiosis treatments. These results collectively indicate that anaerobiosis may increase SOC leaching and its magnitude is dependent on the extent of iron reduction and pH variations. Fermentation-enhanced release of ferrous iron and acetate may have an even stronger influence on the downstream biogeochemistry. Hence, temporary anaerobiosis warrants better recognition and investigation in the Mongolian (relative to Qinghai-Tibetan) grasslands that show high soil iron reduction potentials and are predicted to experience increased extreme precipitation in the future.


| 本站导航 | 园区风光| 联系我们 |
版权所有:中国科学院植物研究所 地址:北京市海淀区香山南辛村20号 邮编:100093 电话:010-62590835
网站备案号:京ICP备05002828号       文保网安备案号:1101080078