Identification of monocot chimeric jacalin family reveals functional diversity in wheat

作  者:Ma QH*, Han JQ
卷:253  期:2  页码:30


Monocot chimeric jacalin (MCJ) is a newly identified subfamily of plant lectins that exclusively exists in Poaceae. The MCJs are modular proteins consisting of a dirigent domain and a jacalin-related lectin domain. Their unique evolution and various functions are not fully understood as only few members of MCJ have so for been investigated. From wheat, 46 MCJs were identified and phylogenetically classified into three subfamilies, in which subfamily I represented the early evolutionary cluster. MCJ genes are evenly distributed among three subgenomes of wheat, indicating that MCJ might be an ancient gene in Poaceae. qRT-PCR analysis showed that TaMCJ1 and TaMCJ2 were mainly expressed in leaves while TaMCJ3 in root tissues. All these TaMCJ genes are JA or ABA inducible. All three proteins exhibited agglutinating activity but different preference to mannose-binding. The overexpression of TaMCJ3 in tobacco increased dehydration tolerance, while TaMCJ1 enhanced wildfire disease resistance. The lignin biosynthetic genes were temporarily induced after pathogen inoculation in transgenic tobacco overexpressing TaMCJ, but the specific association with TaMCJ was not established. This evidence argued against the notion that the dirigent domain in TaMCJ is directly linked with lignin metabolism. Taken together, these results pave the way for a better understanding of the manifold functionality of MCJs and offer important insights to the evolutionary history of MCJ.