Location :Home > thesis
Latitudinal Patterns and Climatic Drivers of Leaf Litter Multiple Nutrients in Chinese Broad-Leaved Tree Species: Does Leaf Habit Matter?
Print  |  Close    

Ge JL, Wang Y, Xu WT, Xie ZQ*
PubYear : 2017
Volume : 20  Issue : 6
Publication Name : Ecosystems
Page number : 1124–1136
Abstract : 

Leaf litter nutrients play a key role in nutrient cycling in forest ecosystems, yet our current knowledge of the ways in which climate controls leaf litter nutrients remains uncertain, especially for broad-leaved tree species in China. We performed a meta-analysis of geographic patterns of leaf litter nutrients of Chinese broad-leaved tree species in relation to climatic variables and leaf habit (as a discrete classification of tree species). We found that mean leaf litter carbon (C), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) were 458.36, 10.11, 0.72, 6.37, 14.22 and 2.59 mg−1 g, respectively. Leaf litter nutrients did not diverge between leaf habits where they coexisted. These leaf litter nutrients displayed significant latitudinal trends, partly driven by climatic factors and a shift in leaf habit. Mean annual precipitation explained the largest amount of total variation in leaf litter C, N, P and K, and mean annual temperature was the most important predictor for leaf litter Mg, whereas leaf habit was the largest contributor to total variation in leaf litter Ca. We further found that the relationships between climate and leaf litter nutrients were distinguishable for evergreen and deciduous broad-leaved tree species. Collectively, our study differed from previous studies that evaluated leaf litter nutrients and only focused on N and P, and substantiated that leaf litter nutrients in forest ecosystems were affected by climate and leaf habit, but the strengths of the influences of these factors were strongly contingent on leaf litter nutrient identity. Therefore, alteration of climate would directly and indirectly (via a shift in species composition) affect latitudinal patterns of leaf litter nutrients and thus the associated nutrient flux and ecosystem functioning. Our study also underlined the need to include multiple nutrients to explore the influence of climate on leaf litter nutrient stoichiometry.

download :