姓  名: 贺超英
职务/职称: 研究员、研究组组长
联系电话: (86)-010-62836085
电子邮件: chaoying@ibcas.ac.cn
个人网页: http://www.lseb.cn/rcpy/dsjj/bd/hcy/
课 题 组: 功能进化发育生物学研究组
贺超英,男,博士,研究员, 博士生导师。

中国科学院植物研究所研究员,中国科学院大学岗位教授,中科院人才计划入选者,国家杰出青年科学基金获得者,入选国家百千万人才工程 现任系统与进化植物学国家重点实验室副主任。

1995年在西北师范大学获得理学学士学位;1998年中国林业科学院亚热带林业研究所获得农学硕士学位;2001年在中国科学院遗传研究所获得理学博士学位。200110月到德国Max-Planck-Institute for Plant Breeding ResearchCologne)植物分子遗传系从事博士后研究工作,并于2006年在该系成立功能进化研究组(共同研究组长);2008年到中国科学院植物研究所系统与进化植物学国家重点实验室工作,成立了功能进化发育生物学研究组(研究组组长)。 

主持承担国家自然科学基金重点项目、国家杰出青年科学基金项目、创新研究群体项目、重大研究计划培育项目、面上项目、中国科学院战略先导项目(子)课题、中国科学院重点部署项目10余项。在花和果实形态创新结构的起源、形态多样性进化和可塑性的遗传基础、作物高产分子模块解析和基因家族功能进化等方面取得了重要成果。在Nat CommunPlant CellProc Natl Acad Sci USANew PhytolPlant JPlant PhysiolMol Biol EvolJ Exp BotBMC Evol BiolGenome Biol EvolPlant Cell PhysiolBMC Plant BiolPlanta等主流杂志发表论文60余篇。2016年获得中国科学院优秀共产党员称号,2018年获中国侨界贡献奖(二等奖)2020年被授予有突出贡献中青年专家称号,2022年获得中国科学院朱李月华优秀教师奖。

研究方向和内容 

研究组开展植物功能进化发育生物学、遗传学、功能基因组学和适应性进化等方面的研究工作,以茄科植物(酸浆属、辣椒属、茄属等)、豆科植物(大豆、苜蓿等)和水稻等为主要试材,聚焦果实性状发育及其进化机制。研究兴趣涉及生物多样性进化的分子机制和重要农(园)艺性状自然变异、驯化和作物设计的分子基础。主要研究内容包括:(1)果实起源及形态结构多样性和形态创新进化发育的遗传基础;(2)大豆果实性状驯化的遗传变异基础及高产分子模块解析;(3)花和果实发育相关重要基因家族的功能进化及其挖掘利用等3方面的研究。

学习与工作机会  

研究组每年招收1-2名硕士/博士研究生(含硕博连读生和从优秀推免本科生中选拔直博生),欢迎对本课题组研究方向感兴趣的有志青年学生报考。具体报名考试时间和考试内容,请参照当年中国科学院植物研究所的招生简章和招生目录。研究组也欢迎客座研究人员和博士后的申请。相关事宜请直接与课题组长联系。

研究论文(注*为通讯作者)

2022

Liu HY, Li J, Gong PC, He CY*. 2022. The origin and evolution of carpels and fruits from an evo-devo perspective. J. Integr. Plant Biol., doi: 10.1111/jipb.13351.

Zhu WW, Yang C, Yong B, Wang Y, Li BB, Gu YZ, Wei SM, An ZH, Sun WK, Qiu LJ*, He CY*. 2022. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY-like gene, is exploited in soybean domestication and improvement. New Phytol., 236: 1375-1392.

Wang L, Liu XY, Li QR, Xu N, He CY*. 2022. A lineage-specific arginine in POS1 is required for fruit size control in Physaleae (Solanaceae) via gene co-option. Plant J., 111: 183-204.

Li QX*, Li KP, Zhang ZR, Li JG, Wang B, Zhang ZM, Zhu YY, Pan CC, Sun K, He CY*. 2022. Transcriptomic comparison sheds new light on regulatory networks for dimorphic flower development in response to photoperiod in Viola prionantha. BMC Plant Biol., 22: 336.

2021

Lu JJ, Luo MF, Wang L, Li KP, Yu YY, Yang WF, Gong PC, Gao HH, Li QR, Zhao J, Wu LF, Zhang MS, Liu XY, Zhang XM, Zhang X, Kang JY, Yu TY, Li ZM, Jiao YN*, Wang HZ*, He CY*. 2021. The Physalis floridana genome provides insights into the biochemical and morphological evolution of Physalis fruits. Hortic. Res., 8: 244. 

Gong PC, Song CJ, Liu HY, Li PG, Zhang MS, Zhang JS, Zhang SH, He CY*. 2021. Physalis floridana CRABS CLAW mediates neofunctionalization of GLOBOSA genes in carpel development. J. Exp. Bot., 72: 6882-6903.

Zhao J, Gong PC, Liu HY, Zhang MS, He CY*. 2021. Multiple and integrated functions of floral C-class MADS-box genes in flower and fruit development of Physalis floridana. Plant Mol. Biol., 107: 101-116.

Li QX, Li JG, Zhang L, Pan CC, Yang N, Sun K*, He CY*. 2021. Gibberellins are required for the dimorphic flower development in Viola philippica. Plant Sci., 303: 110749.

2020

Gao HH, Li J, Wang L, Zhang JS, He CY*. 2020. Transcriptomic variation of the flower-fruit transition in Physalis and Solanum. Planta, 252: 28.

2019

Wang Y, Gao HH, He LL, Zhu WW, Yan LX, Chen QS, He CY*. 2019. The PHOSPHATE1 genes participate in salt and Pi signaling pathways and play adaptive roles during soybean evolution. BMC Plant Biol., 19: 353.

Li J, Song CJ, He CY*. 2019. Chinese lantern in Physalis is an advantageous morphological novelty and improves plant fitness. Sci. Rep., 9: 596.

贺超英*,王丽,严立新,李巧茹,雍斌,朱韦韦. 2019. 果实起源与多样化的进化发育机制. 中国科学: 生命科学, 49: 301-319.

2018

Gao HH, Wang Y, Li W, Gu YZ, Lai YC, Bi YD, He CY*. 2018. Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans. J. Exp. Bot., 69: 5089-5104.

Hao ZZ, Gong PC, He CY*, Lin JX*. 2018. Peptide aptamers to inhibit protein function in plants. Trends Plant Sci., 23: 281-284.

Gong PC, Li J, He CY*. 2018. Exon junction complex (EJC) core genes play multiple developmental roles in Physalis floridana. Plant Mol. Biol., 98: 545-563.

2017

Gu YZ, Li W, Jiang HW, Wang Y, Gao HH, Lai YC, Chen QS, He CY*2017. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size.  J. Exp. Bot., 68: 2717-2729.

Gong PC, Ao X, Liu GX, Cheng FY*, He CY*2017. Duplication and whorl-specific downregulation of the obligate AP3-PI heterodimer genes explain the origin of Paeonia lactiflora plants with spontaneous corolla mutation. Plant Cell Physiol., 58: 411-425. 

2016

Li QX, Huo QD, Wang J, Zhao J, Sun K*, He CY*. 2016. Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippicaBMC Plant Biol., 16: 151. 

Wang Y, Gu YZ, Gao HH, Qiu LJ, Chang RZ, Chen SY, He CY*2016. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evol. Biol., 16: 79. 

Gu YZ, Xing SL, He CY*2016. Genome-wide analysis indicates lineage-specific gene loss during Papilionoideae evolution. Genome Biol. Evol., 8: 635-648. 

2015

Zhao M, Gu YZ, He LL, Chen QS, He CY*2015. Sequence and expression variations suggest an adaptive role for the DA1-like gene family in the evolution of soybeans. BMC Plant Biol., 15: 120.  

Zhou H, Cheng FY*, Wu J, He CY*. 2015. Isolation and functional analysis of Flowering Locus T gene in tree peonies (PsFT). J. Amer. Soc. Hort. Sci., 140: 265-271.  

Wang L, Li J, Zhao J, He CY*. 2015. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae. Front. Plant Sci., 6: 248.  

Li ZC, He CY*. 2015Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size. J. Exp. Bot., 66: 257-270. 

Zhang SH, Zhang JS, Zhao J, He CY*. 2015. Distinct subfunctionalization and neofunctionalization of the B-class MADS-box genes in Physalis floridanaPlanta, 241: 387-402. 

2014

Gong PC, Quan H, He CY*. 2014. Targeting MAGO proteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways. Plant J., 80: 905-914. 

Wang L, He LL, Li J, Zhao J, Li ZC, He CY*2014. Regulatory change at Physalis Organ Size 1 locus correlates to natural variation in tomatillo reproductive organ size. Nat. Commun., 5: 4271. 

Gong PC, He CY*2014. Uncovering divergence of rice EJC core heterodimer gene duplication reveals their essential role in growth, development and reproduction. Plant Physiol., 165: 1047-1061. 

Zhao M, He LL, Gu YZ, Wang Y, Chen QS, He CY*2014. Genome-wide analyses of a plant-specific LIM-domain gene family implicate its evolutionary roles in plant diversification. Genome Biol. Evol., 6: 1000-1012. 

Zhang JS, Li ZC, Zhao J, Zhang SH, Quan H, Zhao M, He CY*2014. Deciphering the Physalis floridana double-layered-lantern1 mutant provides insights into functional divergence of the GLOBOSA duplicates within the Solanaceae. Plant Physiol., 164: 748-764. 

Zhang JS, Zhao J, Zhang SH, He CY*. 2014. Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant PhysalisPLoS One, 9: e85534 

Gong PC, Zhao M, He CY*2014. Slow co-evolution of the MAGO and Y14 protein families is required for the maintenance of their obligate heterodimerization mode. PLoS One, 9: e84842. 

2013

Zhao J, Tian Y, Zhang JS, Zhao M, Gong PC, Riss S, Saedler R, He CY*2013. The euAP1 protein MPF3 represses MPF2 to specify floral calyx identity and displays crucial roles in ‘Chinese lantern’ development in PhysalisPlant Cell, 25: 2002-2021.  

He LL, Zhao M, Wang Y, Gai JY, He CY*2013. Phylogeny, structural evolution and functional diversification of the plant PHOSPHATE1 gene family: a focus on Glycine max. BMC Evol. Biol., 13: 103. 

Zhou H, Cheng FY*, Wang R, Zhong Y, He CY*2013. Transcriptome comparison reveals key candidate genes responsible for the unusual reblooming trait in tree peonies. PLoS One, 8: e79996.  

2012

Wang L, Li ZC, He CY*. 2012. Transcriptome-wide mining of the differentially expressed transcripts for natural variation of floral organ size in Physalis philadelphica. J. Exp. Bot., 63: 6457-6465. 

Zhang JS, Khan MR, Tian Y, Li ZC, Simone R, He CY*. 2012. Divergences of MPF2-like MADS-domain proteins have an association with the evolution of the inflated calyx syndrome within Solanaceae. Planta, 236: 1247-1260. 

Khan MR*, Hu J, He CY*. 2012. Plant hormones including ethylene are recruited in calyx inflation in Solanaceous plants. J. Plant Physiol., 169: 940-948. 

2011

He LL, Zhao J, Zhao M, He CY*. 2011. Current development and application of soybean genomics. Front. Biol., 6: 337-348. 

2010及以前

Zhang JS, Tian Y, Wang L, He CY*. 2010. Functional evolutionary developmental biology (evo-devo) of morphological novelties in plants. J. Syst. Evol., 48: 94-101.  

Wunder J, He CY, Hu J, Li M, Varotto C, Saedler H*. 2010. Evolution of plant biodiversity. Acta Hort., 849: 21-32. 

He CY*, Tian Y, Saedler R, Efremova N, Riss S, Khan MR, Yephremov A, Saedler H. 2010. The MADS-domain protein MPF1 of Physalis floridana controls plant architecture, seed development and flowering time. Planta, 231: 767-777. 

Khan MR, Hu J, Riss S, He CY, Saedler H*. 2009MPF2-like-A MADS-box genes control the inflated calyx syndrome in Withania (Solanaceae): roles of Darwinian’s selection. Mol. Biol. Evol., 26: 2463-2473. 

He CY*, Sommer H, Grosardt B, Huijser P, Saedler H*. 2007. PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-box protein MPF2 from Physalis floridanaMol. Biol. Evol., 24: 1229-1241. 

He CY, Saedler H*. 2007. Hormonal control of the inflated calyx syndrome, a morphological novelty, in PhysalisPlant J., 49: 935-946. 

He CY*, Saedler H. 2007. Molecular evolution of a morphological novelty in Solanaceae, the Inflated-Calyx-Syndrome (ICS) in PhysalisActa Hort., 745: 171-182.  

He CY, Saedler H*. 2005. Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae. Proc. Natl. Acad. Sci. USA, 102: 5779-5784. 

He CY, Münster T, Saedler H*. 2004. On the origin of floral morphological novelties. FEBS Lett., 567: 147-151. 

Wang BJ, Wang YJ, Wang Q, Luo GZ, Zhang ZG, He CY, He SJ, Zhang JS, Gai JY, Chen SY*. 2004. Characterization of an NBS-LRR resistance gene homologue from soybean. J. Plant Physiol., 161: 815-822. 

Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY*. 2004. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor. Appl. Genet., 108: 1131-1139. 

Wang BJ, Zhang ZG, Li XG, Wang YJ, He CY, Zhang JS, Chen SY*. 2003. Cloning and analysis of a disease resistance gene homolog from soybean. Act. Bot. Sin., 45: 864-870. 

He CY, Tian AG, Zhang JS, Zhang ZY, Gai JY, Chen SY*. 2003. Isolation and characterization of a full-length resistance gene homolog from soybean. Theor. Appl. Genet., 106: 786-793. 

He CY, Zhang JS, Chen SY*. 2002. A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor. Appl. Genet., 104: 1125-1131. 

He CY, Wang WQ, Dongfang Y, Zhang JS, Chen SY*. 2002. Transcritption regulation of soybean ribulose-1, 5-bisphosphate carboxylase small subunit gene by external factors. Chinese Sci. Bulletin, 47: 37-43.  

He CY, Wu XL, Zhang JS, Gai JY, Chen SY*. 2001. Isolation and characterization of a mitochondrial atp6 gene from soybean [Glycine max (L) Merr]. Act. Bot. Sin., 43: 51-58. 

He CY, Wu XL, Zhang JS, Dongfang Y, Du BX, Zhang ZY, Chen SY*. 2001. Isolation and characterization of a new defense gene from soybean. Sci. in China (C), 44: 409-420.  

He CY, Zhang ZY, Chen SY*. 2001. Isolation and characterization of soybean NBS analogs. Chinese Sci. Bulletin, 46: 1984-1988.