姓  名: 胡玉欣
职务/职称: 研究员、研究组组长
联系电话: (86)-010-62836650
电子邮件: huyuxin@ibcas.ac.cn
个人网页: http://www.klpmp.ibcas.ac.cn/kydw/xbfhyqgfs/hyx/202101/t20210111_615099.html
课 题 组: 激素信号与器官发生研究组
胡玉欣,男,博士,研究员, 博士生导师。

1984年和1987年分别在河南师范大学和山西农业大学获学士和硕士学位,2000年在中国科学院遗传研究所获博士学位。1988年至2001年在河南大学任教, 2001-2005年新加坡国立大学任Research Fellow。现任中科院植物所研究员,国家植物基因研究中心(北京)项目科学家。迄今发表论文40余篇(部),已培养硕士和博士27名。

主要研究工作:

[1] 植物细胞全能性和再生的分子基础

主要以拟南芥为材料,研究植物细胞全能性和再生的分子调控,解析植物再生能力决定以及激素调控体细胞命运转变和再生的分子基础。

[2] 植物器官发生和发育的分子调控

主要以小麦和苜蓿为材料,研究器官发生发育和大小的分子控制,解析植物激素信号和环境信号调控器官发生和发育的分子基础,鉴定控制器官发育和大小的重要功能基因,为作物和饲草分子设计提供依据。

主持和参加的科研项目:

[1]   植物细胞全能性的分子调控,国家自然科学基金重点项目 (31830055)2019-2023),资助金额285万元;主持人

[2]   植物可塑性发育的分子调控机制,中科院战略性科技先导专项 (B类)(XDB27030000)(2018-2023),资助金额700万元;子课题负责人

[3]   微环境调控植物生长点干细胞中心维持与重建的分子网络,国家重点基础研究发展计划(2013CB967300)(2013-2017),资助金额430万元;项目首席科学家。

[4]   生长素调控植物细胞脱分化的分子机制研究,国家自然基金重点项目(31230009)(2013-2017),资助金额300万元;主持人。

[5]   细胞分化与器官发生,国家自然科学基金创新群体项目(31121065)2012-2014)。资助金额70万元,群体成员。

[6]   重要植物器官大小控制的分子基础,国家重大科学研究计划项目植物重要器官形成的遗传和表观遗传调控机理研究2009CB941500)(2009-2013),资助金额280万元;子课题负责人。

研究论文(注*为通讯作者,§为共同第一作者):

2022

Zhang S, Yu R, Yu D, Chang P, Guo S, Yang X, Liu X, Xu C* and Hu Y* .2022. The calcium signaling module CaM–IQM destabilizes IAA–ARF interaction to regulate callus and lateral root formation. Proc Natl Acad Sci USA 119(27): e2202669119

Liu J, Shu D, Tan Z, Ma M, Guo N, Gao S, Duan G, Kuai B, Hu Y, Li S and Cui D .2022. The Arabidopsis IDD14 transcription factor interacts with bZIP-type ABFs/AREBs and cooperatively regulates ABA-mediated drought tolerance. New Phytol 236: 929–942

2021

Xu E, Chai L, Zhang S, Yu R, Zhang X, Xu C and Hu Y* .2021. Catabolism of strigolactones by a carboxylesterase. Nat Plants 7: 1495-1504

Cao P, Fan W, Li P and Hu Y* .2021. Genome-wide profiling of long noncoding RNAs involved in wheat spike development. BMC Genomics 22: 493

2020

Xu C and Hu Y*. 2020. The molecular regulation of cell pluripotency in plants. aBIOTCH 1: 169-177

2019

Liu C, Cui D, Zhao J, Liu Na, Wang B, Liu J, Xu E, Hu Z, Ren D, Tang D and Hu Y*. 2019. Two Arabidopsis receptor-like cytoplasmic kinases SZE1 and SZE2 associate with the ZAR1-ZED1 complex and are required for effector-triggered immunity. Mol. Plant 12: 967-983

Wang Z§, Cui D§, Liu C, Zhao J, Liu J, Liu N, Tang D and Hu Y*. 2019. TCP transcription factors interact with ZED1-related kinases as components of the temperature-regulated immunity. Plant Cell Environ. 42: 2045-2056

Cao P, Liang X, Zhao H, Feng B, Xu E, Wang L and Hu Y*. 2019. Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.). Planta 250: 1967-1981

许智宏*、张宪省*、苏英华、胡玉欣*、徐麟*、王佳伟*. 2019. 植物细胞全能性和再生。 中国科学-生命科学  49101282-1300

2018

Xu CY, Cao HF, Zhang QQ, Wang HZ, Xin W, Xu EJ, Zhang SQ, Yu RX, Yu DX, Hu YX*. 2018. Control of auxin-induced callus formation by bZIP59-LBD complex in Arabidopsis regeneration. Nat. Plants, 4: 108-115.

Xu CY§, Cao HF§, Xu EJ§, Zhang SQ, Hu YX*. 2018. Genome-wide identification of Arabidopsis LBD29 target genes reveals the molecular events behind auxin-induced cell reprograming during callus formation. Plant Cell Physiol., 59: 744-755.

Liu J, Hu XM, Qin P, Prasad K, Hu YX, Xu L*. 2018. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture. Plant Cell Physiol., 59: 734-743.

2017

Wang Z, Cui D, Liu J, Zhao J, Liu C, Xin W, Li Y, Liu N, Ren D, Tang D and Hu Y* . 2017. Arabidopsis ZED1-related kinases mediate the temperature-sensitive intersection of immune response and growth homeostasis. New Phytol 215: 711-724.

Xin W, Wang Z, Liang Y, Wang Y and Hu Y*2017. Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis. J Plant Physiol 217: 1-6.

2016

Shang B, Xu C, Zhang X, Cao H, Xin W and Hu Y*2016. Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proc Natl Acad Sci USA 113(18): 5101-5106.

Liu Z, Li J, Wang L, Li Q, Lu Q, Yu Y, Li S, Bai M, Hu Y and Xiang F*. 2016. Repression of callus initiation by the miRNA-directed interaction of auxin and cytokinin in Arabidopsis thalianaPlant J 87: 391-402.

2015

Zhang XR, Qin Z, Zhang X and Hu Y* . 2015. Arabidopsis SMALL ORGAN 4, a homolog of yeast NOP53, regulates cell proliferation rate during organ growth.  J Integ Plant Biol  57: 810–818.

2014

Qin Z, Zhang X, Zhang XR, Feng G, and Hu Y*2014. The Arabidopsis ORGAN SIZE-RELATED 2 is involved in regulation of cell expansion during organ growth. BMC Plant Biol 14: 349.

Qin Z, Zhang XR, Zhang X, Xin W, Li J, and Hu Y*. 2014. The Arabidopsis transcription factor IIB-related protein BRP4 is involved in the regulation of mitotic cell-cycle progression during male gametogenesis J Exp Bot  65: 2521-2531.

2013

Cui D, Zhao J, Jing Y, Fan M, Liu J, Wang Z, Xin W, and Hu Y*2013. The Arabidopsis IDD14, IDD15, and IDD16 cooperatively regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport. PLoS Genet 9: e1003759.

Lin X, Wu F, Du X, Shi X, Liu Y, Liu S, Hu Y, Theiben G, and Meng Z. 2013. The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the ‘empty glumes’ of rice (Oryza sativa) spikelets are in fact rudimentary lemmas. New Phytol 602: 689-702.

2012

Xu K, Liu J, Fan M, Xin W, Hu Y, Xu C. 2012. A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs. Genomics .2012. 100: 116-124.

Fan MZ, Xu CY, Xu K and Hu Y2012. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Research. 22:1169–1180  

2011

Feng G, Qin Z, Yan J, Zhang X and Hu Y2011. Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytologist, 191: 635-646  

2010以前

Hu Z, Qin Z, Wang M, Xu C, Feng G, Liu J, Meng Z and Hu Y2010. The Arabidopsis SMO2, a homologue of yeast TRM112, modulates progression of cell division during organ growth. The Plant Journal, 61:600-610  

Liu CM and Hu Y2010. Plant stem cells and their regulations in shoot apical meristem. Front Biology, 5: 417–423  

Hu Z, Zhang X, Qin Z, and Hu Y2010. Arabidopsis SMO2 regulates seed germination and ABA response. Plant Signaling & Behavior, 5:325-327  

Jing Y, Cui D, Bao F, Hu Z, Qin Z and Hu Y2009. Tryptophan deficiency affects organ growth by retarding cell expansion in Arabidopsis. The Plant Journal, 57:511-521  

Catala F, Ouyang JAbreu IA, Hu Y, Seo H, Zhang X and Chua NH. 2007. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell, 19: 2952-2966  

Hu Y, Poh HM and Chua NH. 2006. The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. The Plant Journal, 4719  

Ge C, Cui X, Wang Y, Hu Y, Fu Z, Zhang D, Cheng Z and Li J. 2006. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Research, 16: 446-456 

Hu Y, Wang Y, Liu X, and Li J. 2004. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research, 14: 8-15  

Hu Y, Xie Q and Chua NH. 2003. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell, 15: 1951-1961  

Mou Z., Wang X, Fu Z, Dai Y, Han C, Ouyang J, Bao F, Hu Y and Li J. 2002. Silencing of Phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. Plant Cell, 14: 2031-2043  

Bao F, Hu Y and Li J. 2002. Identification of auxin responsive genes in Arabidopsis by cDNA array. Chinese Science Bulletin, 47: 548-552  

Hu Y, Wang Z, WangY and Li J. 2001. Identification of brassinosteroid responsive genes in Arabidopsis by cDNA array. Science China, 44: 637-643  

Hu Y, Bao F and Li J. 2000. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. The Plant Journal, 24: 693-701