姓  名: 郭亚龙
职务/职称: 研究员
联系电话: 62836298
电子邮件: yalong.guo@ibcas.ac.cn  
个人网页: http://www.lseb.cn/guoyalong
课 题 组: 进化基因组学和遗传学研究组
郭亚龙,男,博士,研究员,博士生导师。

1998年在西北师范大学获学士学位,2001年在兰州大学获硕士学位,2005年在中科院植物所获博士学位。2005年至2011年在德国马普发育生物学研究所做博士后研究。2012年获得国家自然科学基金委优秀青年科学基金项目资助;2019年获得国家自然科学基金委杰出青年科学基金项目资助;2019年获得吴征镒植物学奖青年创新奖。目前担任中国科学院大学岗位教授;《Journal of Systematics and Evolution》副主编,《Journal of Integrative Plant Biology》、《BMC Plant Biology》、《植物学报》及《生物多样性》编委;国际拟南芥指导委员会( The Multinational Arabidopsis Steering Committee)自然变异与比较基因组学分会(Natural variation and comparative genomics)共同主席,系统与进化植物学专业委员会委员。主要研究方向是植物适应性进化,具体包括三个方面的研究工作:1)进化基因组学;2)自交不亲和系统的进化及物种形成;3)自然变异及适应性进化。

主要研究方向及研究成果:

1.进化基因组学

利用全基因组测序的手段,结合进化基因组学、群体遗传学及生物信息学等多学科的方法,重点探讨基因组进化的规律和机制,包括基因组大小的变异(Hu et al., 2011, Nature Genetics)、基因的重复和丢失(Guo et al., 2011, Plant Physiology; Guo, 2013, Plant Journal)、基因的起源(Li et al., 2016, Genome Biology and Evolution)、假基因化(Xu et al., 2019, Plant Cell)、转座子的扩增和丢失(Li et al., 2018, Genome Biology and Evolution)及植物里受平衡选择的基因(Wu et al., 2017, Genome Biology)等。研究的类群以十字花科的拟南芥及其近缘种以及禾本科的水稻及其近缘种为主。

2.自交不亲和系统的进化及物种形成

自交不亲和(self-incompatibility, SI)在很多有花植物中都存在,它的遗传决定位点被称为自交不亲和位点(S locus)。植物可以通过排斥自己的或与自己具有类似自交不亲和位点的花粉从而保持异交。通过群体遗传学、比较基因组学及分子遗传学方法来揭示自交不亲和位点进化的基本规律及其对物种形成的贡献(Guo et al., 2009, PNAS; Guo et al., 2011, Plant Physiology)。对自交不亲和系统的进化及功能方面的深入研究不仅具有重要的理论价值,而且对育种科学有重大的应用价值。下一步的研究主要从物种形成方面展开,重点探讨生殖隔离的形成机制及其与物种形成的关系。

3.自然变异及适应性进化

适应性是生物在变化多样的环境中生存下来的最重要的能力。动物在极端环境下可以逃走而植物却不能。从进化生物学、生态学及分子遗传学各个角度来研究自然变异的规律和机制,进而揭示植物如何适应环境(Guo et al., 2012, Genetics; Han et al., 2015, Molecular Plant; Zou et al., 2017, Genome Biology; Yang et al., 2018, Plant Cell; Niu et al., 2019, PNAS)。

招生及人员招聘

如果您对本研究组的研究感兴趣,请考虑加入我们。从2012年开始,每年本研究组将招收2-3名硕士(含硕博连读)和博士研究生,具体考试报名时间和考试内容,请参照当年的中科院植物所的招生简章和招生目录。本研究组也欢迎博士后的申请。2020年招收博士后1-2名,专业领域为植物学、基因组学、生物信息学或分子遗传学。具体事宜请与郭亚龙研究员直接联系。

科研项目

拟南芥近缘种在新环境下的基因组变异及其适应机制,国家自然科学基金微进化过程的多基因作用机制重大研究计划培育项目(批准号:912311042013.1 - 2015.12),主持人。

植物的适应性进化,国家自然科学基金优秀青年科学基金项目(批准号:312220062013.1 - 2015.12),主持人。

水稻耐旱性状分子模块系统解析,中国科学院战略性先导科技专项(A类)分子模块设计育种创新体系,(XDA080201032013.1 - 2018.12),参加。

多倍体荠菜的起源研究,国家自然科学基金面上项目(批准号:314703312015.1 - 2018.12),主持人。

多倍体基因组变异机制及其适应性的研究,国家自然科学基金微进化过程的多基因作用机制重大研究计划集成项目(批准号:917313062018.1 - 2019.12), 主持人。

植物适应性进化的研究,中国科学院战略性先导科技专项(B类)植物特化性状形成及定向发育调控,(批准号:XDB270103052018.8 - 2023.8),子课题负责人。

植物适应性进化,国家自然科学基金杰出青年科学基金项目(批准号:319250042020.1 - 2024.12),主持人。

研究论文 (§ 共同第一作者,* 通讯作者)

2020

[1]       Ge S*, Guo YL. 2020. Evolution of genes and genomes in the genomics era. Sci China Life Sci 63: 602-605.

[2]       Zhang MX, Zhu SS, Xu YC, Guo YL, Yang WC*, Li HJ*. 2020. Transcriptional repression specifies the central cell for double fertilization. Proc Natl Acad Sci U S A 117: 6231-6236.

[3]       Zhang J, Fu XX, Li RQ, Zhao X, Liu Y, Li MH, Zwaenepoel A, Ma H, Goffinet B, Guan YL, Xue JY, Liao YY, Wang QF, Wang QH, Wang JY, Zhang GQ, Wang ZW, Jia Y, Wang MZ, Dong SS, Yang JF, Jiao YN, Guo YL, Kong HZ, Lu AM, Yang HM, Zhang SZ*, Van de Peer Y*, Liu ZJ*, Chen ZD*. 2020. The hornwort genome and early land plant evolution. Nat Plants 6: 107-118.

2019

[4]       Zhong S, Liu M, Wang Z, Huang Q, Hou S, Xu YC, Ge Z, Song Z, Huang J, Qiu X, Shi Y, Xiao J, Liu P, Guo YL, Dong J, Dresselhaus T, Gu H, Qu LJ*. 2019. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 364, 851.

[5]       Li Z, Mo W, Jia L, Xu YC, Tang W, Yang W, Guo YL, Lin R*. 2019. Rice FLUORESCENT1 is involved in the regulation of chlorophyll. Plant Cell Physiol 60: 2307-2318.

[6]       Niu XM§, Xu YC§, Li ZW, Bian YT, Hou XH, Chen JF, Zou YP, Jiang J, Wu Q, Ge S, Balasubramanian S, Guo YL*. 2019. Transposable elements drive rapid phenotypic variation in Capsella rubella. Proc Natl Acad Sci U S A 116: 6908-6913. (Cover story)

[7]       Xu YC, Niu XM, Li XX, He W, Chen JF, Zou YP, Wu Q, Zhang YE, Busch W, Guo YL*. 2019. Adaptation and phenotypic diversification through loss-of-function mutations in Arabidopsis protein-coding genes. Plant Cell 31: 1012-1025.  [For perspectives on this work, see: 1] Caseys C. 2019. Loss-of-function, a strategy for adaptation in Arabidopsis. Plant Cell 31: 935. 2] Faculty of 1000 Biology: https://f1000.com/prime/735346397]

[8]       Cai Z, Zhou L, Ren NN, Xu X, Liu R, Huang L, Zheng XM, Meng QL, Du YS, Wang MX, Geng MF, Chen WL, Jing CY, Zou XH, Guo J, Chen CB, Zeng HZ, Liang YT, Wei XH, Guo YL, Zhou HF, Zhang FM, Ge S*. 2019. Parallel speciation of wild rice associated with habitat shifts. Mol Biol Evol 31: 875-889.

[9]       郭亚龙*. 2019. 拟南芥及其近缘种的适应性进化研究. 中国科学:生命科学49: 320-326.

[10]    Yan Z, Hou X, Han W, Ma S, Shen H, Guo YL, Fang J*. 2019. Effects of nitrogen and phosphorus supply on stoichiometry of six elements in leaves of Arabidopsis thaliana. Annals of Botany 123: 441-450.

[11]    Mao D, Xin Y, Tan Y, Hu X, Bai J, Liu ZY, Yu Y, Li L, Peng C, Fan T, Zhu Y, Guo YL, Wang S, Lu D, Xing Y, Yuan L*, Chen C*. 2019. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc Natl Acad Sci U S A 116: 3494-3501.

2018

[12]    Yang L, Wang HN, Hou XH, Zou YP, Han TS, Niu XM, Zhang J, Zhao Z, Todesco M, Balasubramanian S, Guo YL*. 2018. Parallel evolution of common allelic variants confers flowering diversity in Capsella rubella. Plant Cell 30: 1322-1336.  [For perspectives on this work, see: 1] Moyers BT. 2018. Is Genetic Evolution Predictable? Plant Cell 30: 1171-1172. 2] Faculty of 1000 Biology: https://f1000.com/prime/733248611]

[13]    Shen Y, Zhang J, Liu Y, Liu S, Liu Z, Duan Z, Wang Z, Zhu B, Guo YL, and Tian Z*. 2018. DNA methylation footprints during soybean domestication and improvement. Genome Biology 19: 128.

[14]    Li ZW, Hou XH, Chen JF, Xu YC, Wu Q, González J, Guo YL*. 2018. Transposable elements contribute to the adaptation of Arabidopsis thaliana. Genome Biology and Evolution 10: 2140-2150.

[15]    Yan Z, Li X, Tian D, Han W, Hou X, Shen H, Guo YL, Fang J*. 2018. Nutrient addition affects scaling relationship of leaf nitrogen to phosphorus in Arabidopsis thaliana. Functional Ecology 32: 2689-2698.

2017

[16]    Zou YP, Hou XH, Wu Q, Chen JF, Li ZW, Han TS, Niu XM, Yang L, Xu YC, Zhang J, Zhang FM, Tan D, Tian Z, Gu H, Guo YL*. 2017. Adaptation of Arabidopsis thaliana to the Yangtze River basin. Genome Biology 18: 239.

[17]    Wu Q, Han TS, Chen X, Chen JF, Zou YP, Li ZW, Xu YC, Guo YL*. 2017. Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biology 18: 217.  [For perspectives on this work, see: Wang B, Mitchell-Olds T. 2017. Balancing selection and trans-specific polymorphisms. Genome Biology 18(1): 231]

[18]    Li W, Zhang F, Wu R, Jia L, Li G, Guo YL, Liu C, Wang G*. 2017. A novel N-methyltransferase in Arabidopsis appears to feed a conserved pathway for nicotinate detoxification among land plants and is associated with lignin biosynthesis. Plant Physiol 174: 1492-1504.

2016

[19]    Li ZW, Chen X, Wu Q, Hagmann J, Han TS, Zou YP, Ge S, Guo YL*. 2016. On the origin of de novo genes in Arabidopsis thaliana populations. Genome Biology and Evolution 8: 2190-2202.

[20]    Yan Z, Guan H, Han W, Han TS, Guo YL, Fang J*. 2016. Reproductive organ and young tissues show constrained elemental composition in Arabidopsis thaliana. Annals of Botany 117: 431-439.

2015

[21]    Han TS, Wu Q, Hou XH, Li ZW, Zou YP, Ge S, Guo YL*. 2015. Frequent introgressions from diploid species contribute to the adaptation of the tetraploid Shepherd’s purse (Capsella bursa-pastoris). Molecular Plant 8: 427-438. (Cover story)

[22]    Yan Z, Kim N, Han W, Guo YL, Han TS, Du E, Fang J*. 2015. Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant Soil 388: 147-155.

2013

[23]    Slotte T, Hazzouri KM, ?gren JA, Koenig D, Maumus F, Guo YL, Steige K, Platts AE, Escobar JS, Newman LK, Wang W, Mandáková T, Vello E, Smith LM, Henz SR, Steffen J, Takuno S, Brandvain Y, Coop G, Andolfatto P, Hu TT, Blanchette M, Clark RM, Quesneville H, Nordborg M, Gaut BS, Lysak MA, Jenkins J, Grimwood J, Chapman J, Prochnik S, Shu S, Rokhsar D, Schmutz J, Weigel D*, Wright SI*. 2013. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nature Genetics 45: 831-835.

[24]    Guo YL*. 2013. Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes. Plant Journal 73: 941-951.

2012

[25]    Guo YL, Todesco M, Hagmann J, Das S, Weigel D*. 2012. Independent FLC mutations as causes of flowering time variation in Arabidopsis thaliana and Capsella rubella. Genetics 192: 729-739.

2011

[26]    Guo YL, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D*. 2011. Genome-wide comparison of NB-LRR encoding resistance genes in Arabidopsis. Plant Physiology 157: 757-769.

[27]    Guo YL, Zhao X§, Lanz C, Weigel D. 2011. Evolution of S-locus region in Arabidopsis thaliana relatives. Plant Physiology 157: 937-946.

[28]    Hu TT§, Pattyn P§, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov A, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KFX, Van De Peer Y, Grigoriev IV, Nordborg M, Weigel D*, Guo YL*. 2011. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics 43: 476-481.

[29]    Hollister JD, Smith LM, Guo YL, Ott F, Weigel D*, Gaut BS*. 2011. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc. Natl. Acad. Sci. USA 108: 2322-2327.

2010及以前

[30]    Wahl V, Brand LH, Guo YL, Schmid M*. 2010. The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana. BMC Plant Biology 10: 285.

[31]    Guo YL§, Bechsgaard JS§, Slotte T, Neuffer B, Lascoux M, Weigel D*, Schierup MH*. 2009. Recent speciation of Capsella rubella from C. grandiflora, associated with loss of self-incompatibility and an extreme bottleneck. Proc. Natl. Acad. Sci. USA 106: 5246-5251.  [For perspectives on this work, see: 1) Pannell JR. 2009. Mating-system evolution: genies from a bottleneck. Current Biology 19(9): R369-R370. 2] Faculty of 1000 Biology: http://f1000.com/1158981]

[32]    Tang C, Toomajian C, Sherman-Broyles S, Plagnol V, Guo YL, Hu TT, Clark RM, Nasrallah JB, Weigel D, Nordborg M*. 2007. The evolution of selfing in Arabidopsis thaliana. Science 317: 1070-1072.  [For a perspective on this work, see Faculty of 1000 Biology: http://f1000.com/1089382]

[33]    郭亚龙, 葛颂*. 2006. 稻族的系统发育及其研究进展. 植物分类学报 44: 211-230.

[34]    Guo YL, Ge S*. 2005. Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial and nuclear genomes. American Journal of Botany 92: 1548-1558.  [For a perspective on this work, see Faculty of 1000 Biology: http://f1000.com/1029056]

[35]    郭亚龙, 葛颂*. 2004. 线粒体nad1基因内含子在稻族系统学研究中的价值兼论Porteresia的系统位置. 植物分类学报 42: 333-344.